Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 23;1106(1):72-81.
doi: 10.1016/j.brainres.2006.05.076. Epub 2006 Jul 12.

The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels

Affiliations

The neuroleptic drug, fluphenazine, blocks neuronal voltage-gated sodium channels

Xiaoping Zhou et al. Brain Res. .

Abstract

Fluphenazine (Prolixin(R)) is a potent phenothiazine-based dopamine receptor antagonist, first introduced into clinical practice in the late 1950s as a novel antipsychotic. The drug emerged as a 'hit' during a routine ion channel screening assay, the present studies describe our electrophysiological examination of fluphenazine at tetrodotoxin-sensitive (TTX-S) and resistant (TTX-R) voltage-gated sodium channel variants expressed in three different cell populations. Constitutively expressed TTX-S conductances were studied in ND7/23 cells (a dorsal root ganglion-derived clonal cell line) and rat primary cerebrocortical neurons. Recombinant rat Na(V)1.8 currents were studied using ND7/23 cells as a host line for heterologous expression. Sodium currents were examined using standard whole-cell voltage-clamp electrophysiology. Current-voltage relationships for either ND7/23 cell or Na(V)1.8 currents revealed a prominent fluphenazine block of sodium channel activity. Steady-state inactivation curves were shifted by approximately 10 mV in the hyperpolarizing direction by fluphenazine (3 microM for ND7/23 currents and 10 microM for Na(V)1.8), suggesting that the drug stabilizes the inactivated channel state. Fluphenazine's apparent potency for blocking either ND7/23 or Na(V)1.8 sodium channels was increased by membrane depolarization, corresponding IC(50) values for the ND7/23 cell conductances were 18 microM and 960 nM at holding potentials of -120 mV and -50 mV, respectively. Frequency-dependent channel block was evident for each of the cell/channel variants, again suggesting a preferential binding to inactivated channel state(s). These experiments show fluphenazine to be capable of blocking neuronal sodium channels. Several unusual pharmacokinetic features of this drug suggest that sodium channel block may contribute to the overall clinical profile of this classical neuroleptic agent.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources