Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;147(10):4674-9.
doi: 10.1210/en.2006-0301. Epub 2006 Jul 13.

Impact of impaired receptor internalization on calcium homeostasis in knock-in mice expressing a phosphorylation-deficient parathyroid hormone (PTH)/PTH-related peptide receptor

Affiliations

Impact of impaired receptor internalization on calcium homeostasis in knock-in mice expressing a phosphorylation-deficient parathyroid hormone (PTH)/PTH-related peptide receptor

George S Bounoutas et al. Endocrinology. 2006 Oct.

Abstract

Internalization of G protein-coupled receptors (GPCRs) and desensitization of the hormonal responses are well characterized in vitro for several hormonal systems. The physiological role of internalization for a GPCR receptor involved in homeostatic functions has not been established, although it has been assumed based on in vitro data. We have previously shown that phosphorylation of the PTH/PTHrP receptor is required for its internalization and for the desensitization of the responsiveness to PTH and PTHrP in vitro; the internalization and desensitization response is impaired in a PTH/PTHrP receptor mutant bearing serine to alanine mutations in the phosphate acceptor sites. To understand the physiological role of receptor internalization on calcium homeostasis, we have knocked-in the internalization-impaired PTH/PTHrP receptor mutant using homologous recombination technology. The genetically modified animals exhibited calcium levels no different from control animals, but PTH levels were one third of those in control animals indicating that homeostasis could be maintained only by 3-fold suppression of PTH secretion. We also analyzed the calcemic response to PTH in vivo. Here we show that mice expressing the internalization-impaired PTH/PTHrP receptor mutant have dramatically exaggerated cAMP and calcemic responses to sc PTH administration when compared with control animals given the same dose. These data show for the first time the role of G protein receptor phosphorylation and internalization per se in the regulatory function of an endocrine system controlled by a GPCR.

PubMed Disclaimer

Publication types

MeSH terms