Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;13(17):1971-8.
doi: 10.2174/092986706777585013.

Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target

Affiliations
Review

Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target

Diego Geroldi et al. Curr Med Chem. 2006.

Abstract

The receptor for advanced glycation end products (RAGE) is a cell-bound receptor of the immunoglobulin superfamily which may be activated by a variety of proinflammatory ligands including advanced glycoxidation end products, S100/calgranulins, high mobility group box 1, and amyloid beta-peptide. RAGE has a secretory splice isoform, soluble RAGE (sRAGE), that lacks the transmembrane domain and therefore circulates in plasma. By competing with cell-surface RAGE for ligand binding, sRAGE may contribute to the removal/neutralization of circulating ligands thus functioning as a decoy. Clinical studies have recently shown that higher plasma levels of sRAGE are associated with a reduced risk of coronary artery disease, hypertension, the metabolic syndrome, arthritis and Alzheimer's disease. Increasing the production of plasma sRAGE is therefore considered to be a promising therapeutic target that has the potential to prevent vascular damage and neurodegeneration. This review presents the state of the art in the use of sRAGE as a disease marker and discusses the therapeutic potential of targeting sRAGE for the treatment of inflammation-related diseases such as atherosclerosis, arthritis and Alzheimer's disease.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources