Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms
- PMID: 16842351
- DOI: 10.1111/j.1574-6968.2006.00280.x
Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms
Abstract
Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria in these model biofilms develop characteristic multicellular structures through a series of distinct steps where cellular migration plays an important role. Despite the appearance of these characteristic developmental patterns in the model biofilms the available evidence suggest that the biofilm forming organisms do not possess comprehensive genetic programs for biofilm development. Instead the bacteria appear to have evolved a number of different mechanisms to optimize surface colonization, of which they express a subset in response to the prevailing environmental conditions. These mechanisms include the ability to regulate cellular adhesiveness and migration in response to micro-environmental signals including those secreted by the bacteria themselves.
Similar articles
-
Characterization of starvation-induced dispersion in Pseudomonas putida biofilms.Environ Microbiol. 2005 Jun;7(6):894-906. doi: 10.1111/j.1462-2920.2005.00775.x. Environ Microbiol. 2005. PMID: 15892708
-
Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy.Cytometry A. 2009 Feb;75(2):90-103. doi: 10.1002/cyto.a.20685. Cytometry A. 2009. PMID: 19051241 Review.
-
Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal.FEMS Microbiol Lett. 2006 Dec;265(2):215-24. doi: 10.1111/j.1574-6968.2006.00493.x. Epub 2006 Oct 20. FEMS Microbiol Lett. 2006. PMID: 17054717
-
A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance.Nature. 2003 Nov 20;426(6964):306-10. doi: 10.1038/nature02122. Nature. 2003. PMID: 14628055
-
Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities?Cell Microbiol. 2006 Dec;8(12):1841-9. doi: 10.1111/j.1462-5822.2006.00817.x. Epub 2006 Oct 4. Cell Microbiol. 2006. PMID: 17026480 Review.
Cited by
-
Cooperation and conflict in microbial biofilms.Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):876-81. doi: 10.1073/pnas.0607651104. Epub 2007 Jan 8. Proc Natl Acad Sci U S A. 2007. PMID: 17210916 Free PMC article.
-
A novel two-component system BqsS-BqsR modulates quorum sensing-dependent biofilm decay in Pseudomonas aeruginosa.Commun Integr Biol. 2008;1(1):88-96. doi: 10.4161/cib.1.1.6717. Commun Integr Biol. 2008. PMID: 19513205 Free PMC article.
-
The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems.Front Microbiol. 2017 Jan 20;8:37. doi: 10.3389/fmicb.2017.00037. eCollection 2017. Front Microbiol. 2017. PMID: 28163702 Free PMC article. Review.
-
Marine bacteria from the French Atlantic coast displaying high forming-biofilm abilities and different biofilm 3D architectures.BMC Microbiol. 2015 Oct 24;15:231. doi: 10.1186/s12866-015-0568-4. BMC Microbiol. 2015. PMID: 26498445 Free PMC article.
-
Complex Interplay between FleQ, Cyclic Diguanylate and Multiple σ Factors Coordinately Regulates Flagellar Motility and Biofilm Development in Pseudomonas putida.PLoS One. 2016 Sep 16;11(9):e0163142. doi: 10.1371/journal.pone.0163142. eCollection 2016. PLoS One. 2016. PMID: 27636892 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases