Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Aug;41(1):42-52.
doi: 10.1111/j.1600-079X.2006.00330.x.

A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm

Affiliations
Comparative Study

A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm

H Migaud et al. J Pineal Res. 2006 Aug.

Abstract

The purpose of this study was to determine and compare the light sensitivity of two commercially important, phylogenetically different teleost species in terms of melatonin production. Three series of experiments were performed on both Atlantic salmon and European sea bass. First, a range of light intensities were tested ex vivo on pineal melatonin production in culture during the dark phase. Then, light transmission through the skull was investigated, and finally short-term in vivo light sensitivity trials were performed. Results showed that sea bass pineal gland ex vivo are at least 10 times more sensitive to light than that of the salmon. Light intensity threshold in sea bass appeared to be between 3.8 x 10(-5) and 3.8 x 10(-6) W/m2 in contrast to 3.8 x 10(-4) and 3.8 x 10(-5) W/m2 in salmon. These highlighted species-specific light sensitivities of pineal melatonin production that are likely to be the result of adaptation to particular photic niches. Light transmission results showed that a significantly higher percentage of light penetrates the sea bass pineal window relative to salmon, and confirmed that penetration is directly related to wavelength with higher penetration towards the red end of the visible spectrum. Although results obtained in vivo were comparable, large differences between ex vivo and in vivo were observed in both species. The pineal gland in isolation thus appeared to have different sensitivities as the whole animal, suggesting that retinal and/or deep brain photoreception may contribute, in vivo, to the control of melatonin production.

PubMed Disclaimer

Publication types

LinkOut - more resources