Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep-Oct;1757(9-10):1263-70.
doi: 10.1016/j.bbabio.2006.05.024. Epub 2006 May 22.

The human mitochondrial transport/carrier protein family. Nonsynonymous single nucleotide polymorphisms (nsSNPs) and mutations that lead to human diseases

Affiliations
Free article
Review

The human mitochondrial transport/carrier protein family. Nonsynonymous single nucleotide polymorphisms (nsSNPs) and mutations that lead to human diseases

Hartmut Wohlrab. Biochim Biophys Acta. 2006 Sep-Oct.
Free article

Abstract

There are 67 proteins in the human mitochondrial transport protein family. They have been identified from among the proteins of the RefSeq database on the basis of sequence similarity to proteins that have been functionally identified as mitochondrial transport proteins. They have also been identified by matching their predicted structure to the high resolution structure of the bovine ADP/ATP T1 transporter subunit/carboxyatractyloside complex. 74 nonsynonymous single nucleotide polymorphisms (nsSNP) have been identified in their gene sequences. These nsSNPs are present in genes of 30 of the proteins. No nsSNP has been found in 24 of the protein genes and no search has as yet been carried out on the rest (13) of them. The largest number of nsSNPs are in the ADP/ATP T3 transporter, the uncoupling protein 3 L, and the phosphate transporter genes with 7, 6, and 6, respectively. nsSNPs are located in groups along the protein sequence suggesting that certain protein domains are too critical for transport function to tolerate mutations. This interpretation has been validated with mutation and function studies of the phosphate transporter. Human diseases have been identified with replacement mutations in seven of these proteins. Their genes are not abnormally susceptible to mutations since they have the smallest number of nsSNPs. Disease causing mutations have also been observed as: substitution, silent (may affect stability of messages), frameshift (protein truncation or elongation), splicing (exon skipping), residue deletion. Disease causing mutations have only been identified in few transporter genes because others do not yield dramatic symptoms or are essential and thus lethal. Mutations in other transporter genes may also only have a major impact through their combination with other genes and their nsSNPs.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources