Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2007 May;98(7):1346-52.
doi: 10.1016/j.biortech.2006.05.030. Epub 2006 Jul 14.

Influence of soil reaction on diversity and antifungal activity of fluorescent pseudomonads in crop rhizospheres

Affiliations
Comparative Study

Influence of soil reaction on diversity and antifungal activity of fluorescent pseudomonads in crop rhizospheres

Rajni Verma et al. Bioresour Technol. 2007 May.

Abstract

The diversity and antifungal activity of fluorescent pseudomonads isolated from rhizospheres of tea, gladiolus, carnation and black gram grown in acidic soils with similar texture and climatic conditions were studied. Biochemical characterisation including antibiotic resistance assay, RAPD and PCR-RFLP studies revealed a largely homogenous population. At soil pH (5.2), the isolates exhibited growth with varying levels of siderophore production, irrespective of crop rhizospheres. Two isolates with maximum chitinase production showed antagonism. The bacterial populations in general lacked the ability to produce deleterious traits such as cellulase, pectinase and hydrogen cyanide. However, increased pH levels beyond 5.2 caused reduction in metabolite production with reduced antifungal activity. The homogeneity of the bacterial population irrespective of crop rhizospheres together with decreased secondary metabolite production at higher pH levels reinstated the importance of soil over host plant in influencing rhizosphere populations. The studies also yielded acid tolerant chitinase producing antagonistic fluorescent pseudomonads.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources