Pore size distributions of ion exchangers and relation to protein binding capacity
- PMID: 16844131
- DOI: 10.1016/j.chroma.2006.06.057
Pore size distributions of ion exchangers and relation to protein binding capacity
Abstract
The pore structure of chromatographic media directly influences macromolecular transport and adsorption, and consequently separation resolution and loading capacity in chromatographic separations. The pore size distribution (PSD) is therefore a central structural characteristic of chromatographic materials and a critical determinant of chromatographic behavior. In this work the PSDs of a set of commercial anion exchangers were determined by inverse size-exclusion chromatography (ISEC). The PSDs were further utilized to develop relations to functional properties of adsorbents, such as intraparticle diffusivity, and static and dynamic binding capacities. We find that the detailed PSD is useful in semi-quantitative understanding of chromatographic behavior. However, more accurate prediction of column behavior requires more thorough knowledge of the pore structure, specifically the connectivity of the pore network, as well as improved understanding of the function of grafted resins.
Similar articles
-
Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography.J Chromatogr A. 2007 Apr 6;1146(2):202-15. doi: 10.1016/j.chroma.2007.02.041. Epub 2007 Feb 17. J Chromatogr A. 2007. PMID: 17336312
-
Three-dimensional pore structure of chromatographic adsorbents from electron tomography.Langmuir. 2006 Dec 19;22(26):11148-57. doi: 10.1021/la0613225. Langmuir. 2006. PMID: 17154596
-
Dextran-grafted cation exchanger based on superporous agarose gel: adsorption isotherms, uptake kinetics and dynamic protein adsorption performance.J Chromatogr A. 2010 Jul 30;1217(31):5084-91. doi: 10.1016/j.chroma.2010.05.065. Epub 2010 Jun 8. J Chromatogr A. 2010. PMID: 20579653
-
Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography.J Chromatogr A. 2004 May 28;1037(1-2):273-82. doi: 10.1016/j.chroma.2004.02.054. J Chromatogr A. 2004. PMID: 15214670 Review.
-
Protein adsorption and transport in polymer-functionalized ion-exchangers.J Chromatogr A. 2011 Dec 9;1218(49):8748-59. doi: 10.1016/j.chroma.2011.06.061. Epub 2011 Jun 22. J Chromatogr A. 2011. PMID: 21752388 Free PMC article. Review.
Cited by
-
Diffusion of Protein Molecules through Microporous Nanofibrous Polyacrylonitrile Membranes.ACS Appl Polym Mater. 2021 Mar 12;3(3):1618-1627. doi: 10.1021/acsapm.0c01394. Epub 2021 Feb 23. ACS Appl Polym Mater. 2021. PMID: 34541542 Free PMC article.
-
Chromatography of proteins on charge-variant ion exchangers and implications for optimizing protein uptake rates.J Chromatogr A. 2007 Sep 7;1163(1-2):190-202. doi: 10.1016/j.chroma.2007.06.028. Epub 2007 Jun 22. J Chromatogr A. 2007. PMID: 17640661 Free PMC article.
-
High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: a single-molecule study.J Chromatogr A. 2014 May 23;1343:135-42. doi: 10.1016/j.chroma.2014.03.075. Epub 2014 Apr 4. J Chromatogr A. 2014. PMID: 24751557 Free PMC article.
-
Increasing immunoglobulin G adsorption in dextran-grafted protein A gels.Eng Life Sci. 2021 Mar 20;21(6):392-404. doi: 10.1002/elsc.202000097. eCollection 2021 Jun. Eng Life Sci. 2021. PMID: 34140850 Free PMC article.
-
Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification.Adv Biochem Eng Biotechnol. 2018;165:115-178. doi: 10.1007/10_2017_12. Adv Biochem Eng Biotechnol. 2018. PMID: 28795201 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources