Using nonlinear models in fMRI data analysis: model selection and activation detection
- PMID: 16844388
- DOI: 10.1016/j.neuroimage.2006.03.006
Using nonlinear models in fMRI data analysis: model selection and activation detection
Abstract
There is an increasing interest in using physiologically plausible models in fMRI analysis. These models do raise new mathematical problems in terms of parameter estimation and interpretation of the measured data. In this paper, we show how to use physiological models to map and analyze brain activity from fMRI data. We describe a maximum likelihood parameter estimation algorithm and a statistical test that allow the following two actions: selecting the most statistically significant hemodynamic model for the measured data and deriving activation maps based on such model. Furthermore, as parameter estimation may leave much incertitude on the exact values of parameters, model identifiability characterization is a particular focus of our work. We applied these methods to different variations of the Balloon Model (Buxton, R.B., Wang, E.C., and Frank, L.R. 1998. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39: 855-864; Buxton, R.B., Uludağ, K., Dubowitz, D.J., and Liu, T.T. 2004. Modelling the hemodynamic response to brain activation. NeuroImage 23: 220-233; Friston, K. J., Mechelli, A., Turner, R., and Price, C. J. 2000. Nonlinear responses in fMRI: the balloon model, volterra kernels, and other hemodynamics. NeuroImage 12: 466-477) in a visual perception checkerboard experiment. Our model selection proved that hemodynamic models better explain the BOLD response than linear convolution, in particular because they are able to capture some features like poststimulus undershoot or nonlinear effects. On the other hand, nonlinear and linear models are comparable when signals get noisier, which explains that activation maps obtained in both frameworks are comparable. The tools we have developed prove that statistical inference methods used in the framework of the General Linear Model might be generalized to nonlinear models.
Similar articles
-
fMRI activation maps based on the NN-ARx model.Neuroimage. 2004 Oct;23(2):680-97. doi: 10.1016/j.neuroimage.2004.06.039. Neuroimage. 2004. PMID: 15488418
-
Bayesian model comparison in nonlinear BOLD fMRI hemodynamics.Neural Comput. 2008 Mar;20(3):738-55. doi: 10.1162/neco.2007.07-06-282. Neural Comput. 2008. PMID: 18045013
-
A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals.Neuroimage. 2004 Feb;21(2):547-67. doi: 10.1016/j.neuroimage.2003.09.052. Neuroimage. 2004. PMID: 14980557
-
Modeling the hemodynamic response to brain activation.Neuroimage. 2004;23 Suppl 1:S220-33. doi: 10.1016/j.neuroimage.2004.07.013. Neuroimage. 2004. PMID: 15501093 Review.
-
[Data processing of functional magnetic resonance of brain based on statistical parametric mapping].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Apr;24(2):477-80. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007. PMID: 17591287 Review. Chinese.
Cited by
-
Macroscopic resting-state brain dynamics are best described by linear models.Nat Biomed Eng. 2024 Jan;8(1):68-84. doi: 10.1038/s41551-023-01117-y. Epub 2023 Dec 11. Nat Biomed Eng. 2024. PMID: 38082179 Free PMC article.
-
Investigating Human Neurovascular Coupling Using Functional Neuroimaging: A Critical Review of Dynamic Models.Front Neurosci. 2015 Dec 18;9:467. doi: 10.3389/fnins.2015.00467. eCollection 2015. Front Neurosci. 2015. PMID: 26733782 Free PMC article. Review.
-
The Brain Connectivity Workshops: moving the frontiers of computational systems neuroscience.Neuroimage. 2008 Aug 1;42(1):1-9. doi: 10.1016/j.neuroimage.2008.04.167. Epub 2008 Apr 20. Neuroimage. 2008. PMID: 18511300 Free PMC article.
-
Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering.Neuroimage. 2011 Jun 15;56(4):2109-28. doi: 10.1016/j.neuroimage.2011.03.005. Epub 2011 Mar 9. Neuroimage. 2011. PMID: 21396454 Free PMC article.
-
Imaging faster neural dynamics with fast fMRI: A need for updated models of the hemodynamic response.Prog Neurobiol. 2021 Dec;207:102174. doi: 10.1016/j.pneurobio.2021.102174. Epub 2021 Sep 12. Prog Neurobiol. 2021. PMID: 34525404 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical