Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;8(5):417-31.
doi: 10.1016/j.ymben.2006.03.001. Epub 2006 Jul 17.

Respirometric 13C flux analysis, Part I: design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry

Affiliations

Respirometric 13C flux analysis, Part I: design, construction and validation of a novel multiple reactor system using on-line membrane inlet mass spectrometry

Tae Hoon Yang et al. Metab Eng. 2006 Sep.

Abstract

A novel method for (13)C flux analysis based on on-line CO(2) labeling measurements is presented. This so-called respirometric (13)C flux analysis requires multiple parallel (13)C labeling experiments using differently labeled tracer substrates. In Part I of the work, a membrane-inlet mass spectrometry-based measurement system with 6 parallel reactors with each 12 ml liquid volume and associated experimental and computational methods for the respirometric (13)C data acquisition and evaluation are described. Signal dynamics after switching between membrane probes follow exactly first-order allowing extrapolation to steady state. Each measurement cycle involving 3 reactors takes about 2 min. After development of a dynamic calibration method, the suitability and reliability of the analysis was examined with a lysine-producing mutant of Corynebacterium glutamicum using [1-(13)C(1)], [6-(13)C(1)], [1,6-(13)C(2)] glucose. Specific rates of oxygen uptake and CO(2) production were estimated with an error less than +/-0.3 mmol g(-1) h(-1) and had +/-3% to +/-10% deviations between parallel reactors which is primarily caused by inaccuracies in initial biomass concentration. The respiratory quotient could be determined with an uncertainty less than +/-0.02 and varied only +/-3% between reactors. Fractional labeling of CO(2) was estimated with much higher precision of about +/-0.001 to +/-0.005. The detailed statistical analysis suggested that these data should be of sufficient quality to allow physiological interpretation and metabolic flux estimation. The obtained data were applied for the respirometric (13)C metabolic flux analysis in Part II.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources