Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage
- PMID: 16844905
- PMCID: PMC1533978
- DOI: 10.1105/tpc.106.042937
Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage
Abstract
Antirrhinum majus DEFICIENS (DEF) and Arabidopsis thaliana APETALA3 (AP3) MADS box proteins are required to specify petal and stamen identity. Sampling of DEF/AP3 homologs revealed two types of DEF/AP3 proteins, euAP3 and TOMATO MADS BOX GENE6 (TM6), within core eudicots, and we show functional divergence in Petunia hybrida euAP3 and TM6 proteins. Petunia DEF (also known as GREEN PETALS [GP]) is expressed mainly in whorls 2 and 3, and its expression pattern remains unchanged in a blind (bl) mutant background, in which the cadastral C-repression function in the perianth is impaired. Petunia TM6 functions as a B-class organ identity protein only in the determination of stamen identity. Atypically, Petunia TM6 is regulated like a C-class rather than a B-class gene, is expressed mainly in whorls 3 and 4, and is repressed by BL in the perianth, thereby preventing involvement in petal development. A promoter comparison between DEF and TM6 indicates an important change in regulatory elements during or after the duplication that resulted in euAP3- and TM6-type genes. Surprisingly, although TM6 normally is not involved in petal development, 35S-driven TM6 expression can restore petal development in a def (gp) mutant background. Finally, we isolated both euAP3 and TM6 genes from seven solanaceous species, suggesting that a dual euAP3/TM6 B-function system might be the rule in the Solanaceae.
Figures






Similar articles
-
The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.Plant Cell. 2004 Mar;16(3):741-54. doi: 10.1105/tpc.019166. Epub 2004 Feb 18. Plant Cell. 2004. PMID: 14973163 Free PMC article.
-
Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.Mol Biol Evol. 2007 Feb;24(2):465-81. doi: 10.1093/molbev/msl182. Epub 2006 Nov 29. Mol Biol Evol. 2007. PMID: 17135333
-
Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.Gene. 2014 Oct 25;550(2):200-6. doi: 10.1016/j.gene.2014.08.029. Epub 2014 Aug 19. Gene. 2014. PMID: 25149019
-
To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms.J Hered. 2005 May-Jun;96(3):225-40. doi: 10.1093/jhered/esi033. Epub 2005 Feb 4. J Hered. 2005. PMID: 15695551 Review.
-
Is the lodicule a petal: molecular evidence?Plant Sci. 2012 Mar;184:121-8. doi: 10.1016/j.plantsci.2011.12.016. Epub 2011 Dec 30. Plant Sci. 2012. PMID: 22284716 Review.
Cited by
-
Defining petal cell identity layer-by-layer.Plant Cell. 2024 Jan 30;36(2):215-216. doi: 10.1093/plcell/koad283. Plant Cell. 2024. PMID: 37943669 Free PMC article. No abstract available.
-
Floral organ size control: interplay between organ identity, developmental compartments and compensation mechanisms.Plant Signal Behav. 2009 Sep;4(9):814-7. doi: 10.4161/psb.4.9.9394. Epub 2009 Sep 25. Plant Signal Behav. 2009. PMID: 19847102 Free PMC article. Review.
-
The expression of floral organ identity genes in contrasting water lily cultivars.Plant Cell Rep. 2011 Oct;30(10):1909-18. doi: 10.1007/s00299-011-1098-7. Epub 2011 Jun 10. Plant Cell Rep. 2011. PMID: 21660548
-
Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins.J Exp Bot. 2017 May 17;68(11):2799-2811. doi: 10.1093/jxb/erx158. J Exp Bot. 2017. PMID: 28505304 Free PMC article.
-
Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression.Dev Genes Evol. 2012 Mar;222(1):19-28. doi: 10.1007/s00427-011-0385-1. Epub 2011 Dec 24. Dev Genes Evol. 2012. PMID: 22198545
References
-
- Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F., and Schmidt, R.J. (2000). Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell 5 569–579. - PubMed
-
- Bowman, J.L., Sakai, H., Jack, T., Weigel, D., Mayer, U., and Meyerowitz, E.M. (1992). SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 114 599–615. - PubMed
-
- Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72 85–95. - PubMed
-
- Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., and Davies, B. (2005). Evolution in action: Following function in duplicated floral homeotic genes. Curr. Biol. 15 1508–1512. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases