Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Nov;291(5):H2439-44.
doi: 10.1152/ajpheart.00290.2006. Epub 2006 Jul 14.

Effects of Type II diabetes on capillary hemodynamics in skeletal muscle

Affiliations
Free article
Comparative Study

Effects of Type II diabetes on capillary hemodynamics in skeletal muscle

Danielle J Padilla et al. Am J Physiol Heart Circ Physiol. 2006 Nov.
Free article

Abstract

Microcirculatory red blood cell (RBC) hemodynamics are impaired within skeletal muscle of Type I diabetic rats (Kindig CA, Sexton WL, Fedde MR, and Poole DC. Respir Physiol 111: 163-175, 1998). Whether muscle microcirculatory dysfunction occurs in Type II diabetes, the more prevalent form of the disease, is unknown. We hypothesized that Type II diabetes would reduce the proportion of capillaries supporting continuous RBC flow and RBC hemodynamics within the spinotrapezius muscle of the Goto-Kakizaki Type II diabetic rat (GK). With the use of intravital microscopy, muscle capillary diameter (d(c)), capillary lineal density, capillary tube hematocrit (Hct(cap)), RBC flux (F(RBC)), and velocity (V(RBC)) were measured in healthy male Wistar (control: n = 5, blood glucose, 105 +/- 5 mg/dl) and male GK (n = 7, blood glucose, 263 +/- 34 mg/dl) rats under resting conditions. Mean arterial pressure did not differ between groups (P > 0.05). Sarcomere length was set to a physiological length ( approximately 2.7 mum) to ensure that muscle stretching did not alter capillary hemodynamics; d(c) was not different between control and GK rats (P > 0.05), but the percentage of RBC-perfused capillaries (control: 93 +/- 3; GK: 66 +/- 5 %), Hct(cap), V(RBC), F(RBC), and O(2) delivery per unit of muscle were all decreased in GK rats (P < 0.05). This study indicates that Type II diabetes reduces both convective O(2) delivery and diffusive O(2) transport properties within muscle microcirculation. If these microcirculatory deficits are present during exercise, it may provide a basis for the reduced O(2) exchange characteristic of Type II diabetic patients.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources