MEME: discovering and analyzing DNA and protein sequence motifs
- PMID: 16845028
- PMCID: PMC1538909
- DOI: 10.1093/nar/gkl198
MEME: discovering and analyzing DNA and protein sequence motifs
Abstract
MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel 'signals' in sets of biological sequences. Applications include the discovery of new transcription factor binding sites and protein domains. MEME works by searching for repeated, ungapped sequence patterns that occur in the DNA or protein sequences provided by the user. Users can perform MEME searches via the web server hosted by the National Biomedical Computation Resource (http://meme.nbcr.net) and several mirror sites. Through the same web server, users can also access the Motif Alignment and Search Tool to search sequence databases for matches to motifs encoded in several popular formats. By clicking on buttons in the MEME output, users can compare the motifs discovered in their input sequences with databases of known motifs, search sequence databases for matches to the motifs and display the motifs in various formats. This article describes the freely accessible web server and its architecture, and discusses ways to use MEME effectively to find new sequence patterns in biological sequences and analyze their significance.
Figures



Similar articles
-
MEME SUITE: tools for motif discovery and searching.Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8. doi: 10.1093/nar/gkp335. Epub 2009 May 20. Nucleic Acids Res. 2009. PMID: 19458158 Free PMC article.
-
STAMP: a web tool for exploring DNA-binding motif similarities.Nucleic Acids Res. 2007 Jul;35(Web Server issue):W253-8. doi: 10.1093/nar/gkm272. Epub 2007 May 3. Nucleic Acids Res. 2007. PMID: 17478497 Free PMC article.
-
Discovering novel sequence motifs with MEME.Curr Protoc Bioinformatics. 2002 Nov;Chapter 2:Unit 2.4. doi: 10.1002/0471250953.bi0204s00. Curr Protoc Bioinformatics. 2002. PMID: 18792935
-
Discovering sequence motifs.Methods Mol Biol. 2008;452:231-51. doi: 10.1007/978-1-60327-159-2_12. Methods Mol Biol. 2008. PMID: 18566768 Review.
-
Amino acid motifs for the identification of novel protein interactants.Comput Struct Biotechnol J. 2022 Dec 10;21:326-334. doi: 10.1016/j.csbj.2022.12.012. eCollection 2023. Comput Struct Biotechnol J. 2022. PMID: 36582434 Free PMC article. Review.
Cited by
-
A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.BMC Bioinformatics. 2012 Nov 27;13:317. doi: 10.1186/1471-2105-13-317. BMC Bioinformatics. 2012. PMID: 23181585 Free PMC article.
-
Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions.BMC Genomics. 2013 Jul 5;14:451. doi: 10.1186/1471-2164-14-451. BMC Genomics. 2013. PMID: 23829473 Free PMC article.
-
Dissecting neural differentiation regulatory networks through epigenetic footprinting.Nature. 2015 Feb 19;518(7539):355-359. doi: 10.1038/nature13990. Epub 2014 Dec 24. Nature. 2015. PMID: 25533951 Free PMC article.
-
Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants.BMC Genomics. 2016 Mar 31;17:267. doi: 10.1186/s12864-016-2585-6. BMC Genomics. 2016. PMID: 27029936 Free PMC article.
-
Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons.Hum Mol Genet. 2020 Nov 25;29(19):3285-3295. doi: 10.1093/hmg/ddaa210. Hum Mol Genet. 2020. PMID: 32977341 Free PMC article.
References
-
- Bailey T.L., Elkan C. Unsupervised Learning of Multiple Motifs In Biopolymers Using EM. Mach. Learn. 1995;21:51–80.
-
- Bailey T.L., Elkan C. The value of prior knowledge in discovering motifs with MEME. In: Rawlings C., Clark D., Altman R., Hunter L., Lengauer T., Wodak S., editors. Proceedings of the Third International Conference on Intelligent Systems for Molecular biology, July; Menlo Park, CA: AAAI Press; 1995. pp. 21–29. - PubMed
-
- Bailey T.L., Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Altman R.B., Brutlag D.L., Karp P.D., Lathrop R.H., Searls D.B., editors. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, August; Menlo Park, CA: AAAI Press; 1994. pp. 28–36. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources