Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul 25;45(29):9000-6.
doi: 10.1021/bi0607251.

An isothermal titration calorimetry study of the binding of substrates and ligands to the tartrate dehydrogenase from Pseudomonas putida reveals half-of-the-sites reactivity

Affiliations

An isothermal titration calorimetry study of the binding of substrates and ligands to the tartrate dehydrogenase from Pseudomonas putida reveals half-of-the-sites reactivity

William E Karsten et al. Biochemistry. .

Abstract

An isothermal titration calorimetric study of the binding of substrates and inhibitors to different complexes of tartrate dehydrogenase (TDH) from Pseudomonas putida was carried out. TDH catalyzes the nicotinamide adenine dinucleotide (NAD)-dependent oxidative decarboxylation of d-malate and has an absolute requirement for both a divalent and monovalent metal ion for activity. The ligands Mn(2+), meso-tartrate, oxalate, and reduced nicotinamide adenine dinucleotide (NADH) bound to all TDH complexes with a stoichiometry of 1 per enzyme dimer. The exception is NAD, which binds to E/K(+), E/K(+)/Mn(2+), and E/K(+)/Mg(2+) complexes with a stoichiometry of two per enzyme dimer. The binding studies suggest a half-of-the-sites mechanism for TDH. No significant heat changes were observed for d-malate in the presence of the E/K(+)/Mn(2+) complex, suggesting that it did not bind. In contrast, meso-tartrate does bind to E/K(+)/Mn(2+) but gives no significant heat change in the presence of E/Mn(2+), suggesting that K(+) is required for meso-tartrate binding. meso-Tartrate also binds with a large DeltaC(p) value and likely binds via a different binding mode than d-malate, which binds only in the presence of NAD. In contrast to all of the other ligands tested, the binding of Mn(2+) is entropically driven, likely the result of the entropically favored disruption of ordered water molecules coordinated to Mn(2+) in solution that are lost upon binding to the enzyme. Oxalate, a competitive inhibitor of malate, binds with the greatest affinity to E/K(+)/Mn(2+)/NADH, and its binding is associated with the uptake of a proton. Overall, with d-malate as the substrate, data are consistent with a random addition of K(+), Mn(2+), and NAD followed by the ordered addition of d-malate; there is significant synergism in the binding of NAD and K(+). Although the binding of meso-tartrate also requires enzyme-bound K(+) and Mn(2+), the binding of meso-tartrate and NAD is random.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources