Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;15(3):391-406.
doi: 10.1089/scd.2006.15.391.

Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood

Affiliations

Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood

Leonora Buzańska et al. Stem Cells Dev. 2006 Jun.

Abstract

The ability of stem and progenitor cells to proliferate and differentiate into other lineages is widely viewed as a characteristic of stem cells. Previously, we have reported that cells from a CD34(-) (nonhematopoietic) adherent subpopulation of human cord blood can acquire a feature of multipotential neural progenitors in vitro. In the present study, using these cord blood-derived stem cells, we have established a clonal cell line termed HUCB-NSCs (human umbilical cord blood-neural stem cells) that expresses several neural antigens and has been grown in culture for more than 60 passages. During this time, HUCB-NSCs retained their growth rate, the ability to differentiate into neuronal-, astrocyte-, and oligodendrocyte-like cells and displayed a stable karyotype. DNA microarray analysis of HUCB-NSCs revealed enhanced expression of selected genes encoding putative stem and progenitor cell markers when compared to other mononuclear cells. dBcAMP-induced HUCBNSCs were further differentiated into more advanced neuronal cells. This is the first report of the establishment and characterization of a nontransformed HUCB-NSC line that can be grown continuously in a monolayer culture and induced to terminal differentiation. These cells should further our understanding of the regulatory mechanisms involved in NSC self-renewal and differentiation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources