Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Oct;30(10):1029-37.
doi: 10.1016/0028-3908(91)90130-4.

Receptor sub-types involved in responses of Purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat

Affiliations

Receptor sub-types involved in responses of Purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat

S Hussain et al. Neuropharmacology. 1991 Oct.

Abstract

The effects of the NMDA receptor antagonist, 2-amino-5-phosphonovalerate (APV) and non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) on responses of Purkinje cells to exogenous excitatory amino acids and to electrical stimulation of the parallel fibres, were investigated in slices of the cerebellum of the rat. Glutamate, aspartate, kainate and quisqualate all induced excitation of Purkinje cells. Responses to kainate and quisqualate were blocked by CNQX (10 microM) but not by APV (10 microM). N-Methyl-D-aspartate induced biphasic excitatory-inhibitory responses, both components of which were blocked by APV but not by CNQX. The inhibitory component was less sensitive to blockade by APV but was totally blocked by bicuculline, the GABAA receptor antagonist. Parallel fibre stimulation most commonly induced inhibition of Purkinje cells, with or without preceding excitation. This inhibition was blocked by APV and excitatory responses were often revealed. A less commonly-observed predominantly excitatory response was blocked by CNQX but not by APV and inhibition tended to be revealed. These data suggest that parallel fibre-Purkinje cell synapses possess non-NMDA postsynaptic receptors, while the parallel fibre-inhibitory interneuron synapses possess functional NMDA receptors.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms