Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2006 Jun;22(6):1217-26.
doi: 10.1185/030079906X112534.

Evaluation of levalbuterol metered dose inhaler in pediatric patients with asthma: a double-blind, randomized, placebo- and active-controlled trial

Affiliations
Randomized Controlled Trial

Evaluation of levalbuterol metered dose inhaler in pediatric patients with asthma: a double-blind, randomized, placebo- and active-controlled trial

William E Berger et al. Curr Med Res Opin. 2006 Jun.

Abstract

Objective: To evaluate the efficacy and safety of levalbuterol metered dose inhaler (MDI) in children aged 4-11 years (n = 173).

Research design and methods: Multicenter, randomized, double-blind 28-day study of QID levalbuterol 90 microg, racemic albuterol 180 mug, and placebo (2:1:1 ratio). Serial spirometry was performed on Days 0, 14, and 28. The primary endpoint was the double-blind average peak percent (%) change in FEV(1) from visit pre-dose; the primary comparison was with placebo. Secondary endpoints included the area under the FEV(1) percent change from pre-dose curve and peak % predicted FEV(1). Safety endpoints included adverse events, laboratory tests, rescue medication use, and electrocardiograms.

Results: Levalbuterol significantly improved the least square mean peak percent change in FEV(1) compared with placebo (levalbuterol 25.6% +/- 1.3% [p < 0.001]; racemic albuterol 21.8% +/- 1.8% [p = ns]; placebo 16.8% +/- 1.9%). Results for levalbuterol were similar for the other spirometry endpoints (p < 0.05 vs. placebo). No levalbuterol-treated patients had a peak percent change in FEV(1) < 10% (compared with 15.8% of racemic albuterol-treated patients and 30.3% of placebo-treated patients). The incidence of adverse events was 43.4% for levalbuterol, 56.4% for racemic albuterol, and 51.4% for placebo. The rate of discontinuation was 1.3% for levalbuterol, 2.6% for racemic albuterol, and 8.6% for placebo. The rate of asthma attacks (10.5%, 12.8%, 14.3%, respectively) was similar among treatments. Levalbuterol and racemic albuterol both reduced rescue medication use (p < 0.01 vs. placebo) and produced changes in ventricular heart rate and QT(c-F) that were similar to placebo.

Conclusions: In this study, levalbuterol administered via MDI significantly improved airway function in comparison with placebo in asthmatic children aged 4-11 years with a safety profile that was similar to placebo.

PubMed Disclaimer

Similar articles

Cited by

Publication types