Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Nov 30;72(11):1469-76.
doi: 10.1016/j.bcp.2006.06.002. Epub 2006 Jul 17.

Distinct functions of IRF-3 and IRF-7 in IFN-alpha gene regulation and control of anti-tumor activity in primary macrophages

Affiliations
Review

Distinct functions of IRF-3 and IRF-7 in IFN-alpha gene regulation and control of anti-tumor activity in primary macrophages

Mayra Solis et al. Biochem Pharmacol. .

Abstract

Type I IFN (IFN-alpha/beta) have important biological functions ranging from immune cell development and activation, to tumor cell killing and most importantly inhibition of virus replication. Following viral infection or activation of Toll-like receptors (TLRs) via distinct ligands, IFN-alpha/beta are produced. Two members of the interferon regulatory factor (IRF) family - IRF-3 and IRF-7 - are the major modulators of IFN gene expression. Activation of IRF-3 and IRF-7 by TBK1/IKKvarepsilon mediated phosphorylation promotes IFN gene expression and potentiates the production of IFN responsive genes important to the development of an effective antiviral immune response. IFN treatment can augment anti-tumor properties and they are potentially key players in cancer therapy. For example, adoptive transfer of IFN-gamma-activated macrophages can mediate tumor cell killing via direct cell-cell contact, as well as release of soluble cytotoxic pro-inflammatory molecules. A recent study investigated whether IRF-3 and IRF-7 could mediate the acquisition of new anti-tumor effector functions in macrophages. Adenovirus mediated transduction of the active form of IRF-7 into primary macrophages resulted in the production of type I IFN, upregulation of target genes including TRAIL and increased tumoricidal activity of macrophages; in contrast, the active form of IRF-3 led to induction of cell death. These studies indicate that IRF-7 transduced macrophages may be an attractive candidate for in vivo adoptive therapy of cancer.

PubMed Disclaimer

Publication types

MeSH terms

Substances