Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug;24(3):691-8.
doi: 10.1111/j.1460-9568.2006.04941.x. Epub 2006 Jul 18.

A novel type of cold-sensitive neuron in rat dorsal root ganglia with rapid adaptation to cooling stimuli

Affiliations

A novel type of cold-sensitive neuron in rat dorsal root ganglia with rapid adaptation to cooling stimuli

Alexandru Babes et al. Eur J Neurosci. 2006 Aug.

Abstract

Cold sensing in mammals is heterogeneous and more than one type of receptor molecule is likely to be involved in the transduction process. Most features of innocuous cold receptors have been explained by TRPM8, the cold and menthol receptor, but their fast adaptation to cooling has not yet been reproduced in cellular systems. In this study we have used a newly developed system for applying fast thermal stimuli to dissociated dorsal root ganglia (DRG) neurons from young rats (150-200 g) in primary culture. We describe a novel type of cold-sensitive rat DRG neuron with rapid adaptation to cooling. These cells (4.3% of the total DRG population) do not express either TRPM8 or the other cold-activated TRP channel, TRPA1, and the epithelial sodium channel (ENaC) is not involved in their transduction. Increases in intracellular calcium induced by cooling in rapidly adapting neurons are caused by calcium entry. These neurons express a large and rapidly adapting cold-induced inward current with a time constant of adaptation in the seconds range, and may correspond to the rapidly adapting cold receptors described in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources