Complex networks and simple models in biology
- PMID: 16849202
- PMCID: PMC1618496
- DOI: 10.1098/rsif.2005.0067
Complex networks and simple models in biology
Abstract
The analysis of molecular networks, such as transcriptional, metabolic and protein interaction networks, has progressed substantially because of the power of models from statistical physics. Increasingly, the data are becoming so detailed--though not always complete or correct--that the simple models are reaching the limits of their usefulness. Here, we will discuss how network information can be described and to some extent quantified. In particular statistics offers a range of tools, such as model selection, which have not yet been widely applied in the analysis of biological networks. We will also outline a number of present challenges posed by biological network data in systems biology, and the extent to which these can be addressed by new developments in statistics, physics and applied mathematics.
Figures




Similar articles
-
Inference of scale-free networks from gene expression time series.J Bioinform Comput Biol. 2006 Apr;4(2):503-14. doi: 10.1142/s0219720006001886. J Bioinform Comput Biol. 2006. PMID: 16819798
-
Metatool 5.0: fast and flexible elementary modes analysis.Bioinformatics. 2006 Aug 1;22(15):1930-1. doi: 10.1093/bioinformatics/btl267. Epub 2006 May 26. Bioinformatics. 2006. PMID: 16731697
-
Understanding human metabolic physiology: a genome-to-systems approach.Trends Biotechnol. 2009 Jan;27(1):37-44. doi: 10.1016/j.tibtech.2008.09.007. Epub 2008 Nov 17. Trends Biotechnol. 2009. PMID: 19010556 Review.
-
Biological networks in metabolic P systems.Biosystems. 2008 Mar;91(3):489-98. doi: 10.1016/j.biosystems.2006.11.009. Epub 2007 Jul 14. Biosystems. 2008. PMID: 17761386
-
Gene regulatory network inference: data integration in dynamic models-a review.Biosystems. 2009 Apr;96(1):86-103. doi: 10.1016/j.biosystems.2008.12.004. Epub 2008 Dec 27. Biosystems. 2009. PMID: 19150482 Review.
Cited by
-
Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum.PLoS Comput Biol. 2007 Nov;3(11):e230. doi: 10.1371/journal.pcbi.0030230. Epub 2007 Oct 9. PLoS Comput Biol. 2007. PMID: 18052538 Free PMC article.
-
The effects of incomplete protein interaction data on structural and evolutionary inferences.BMC Biol. 2006 Nov 3;4:39. doi: 10.1186/1741-7007-4-39. BMC Biol. 2006. PMID: 17081312 Free PMC article.
-
Graph-theoretic conditions for zero-eigenvalue Turing instability in general chemical reaction networks.Math Biosci Eng. 2013 Aug;10(4):1207-26. doi: 10.3934/mbe.2013.10.1207. Math Biosci Eng. 2013. PMID: 23906208 Free PMC article.
-
Can Systems Biology Advance Clinical Precision Oncology?Cancers (Basel). 2021 Dec 16;13(24):6312. doi: 10.3390/cancers13246312. Cancers (Basel). 2021. PMID: 34944932 Free PMC article. Review.
-
Biological function through network topology: a survey of the human diseasome.Brief Funct Genomics. 2012 Nov;11(6):522-32. doi: 10.1093/bfgp/els037. Epub 2012 Sep 8. Brief Funct Genomics. 2012. PMID: 22962330 Free PMC article.
References
-
- Abramowitz M, Stegun I. Dover; New York: 1974. Handbook of mathematical functions.
-
- Agrafioti I, Swire J, Abbott I, Huntely D, Butcher S, Stumpf M. Comparative analysis of the Saccaromyces cerevisiae and Caenorhabditis elegans protein interaction networks. BMC Evol. Biol. 2005;5:23. doi:10.1186/1471-2148-5-23 - DOI - PMC - PubMed
-
- Aiello W, Chung F, Lu L. A random graph model for power law graphs. Exp. Math. 2001;10:53–66.
-
- Akaike H. Proc. 44th Session of the Int. Statistical Institute. International Statistical Institute; Voorburg, The Netherlands: 1983. Information measures and model selection; pp. 277–291.
-
- Albert R, Barabasi A. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002;74:47–97. doi:10.1103/RevModPhys.74.47 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources