Stochastic models of receptor oligomerization by bivalent ligand
- PMID: 16849251
- PMCID: PMC1664659
- DOI: 10.1098/rsif.2006.0116
Stochastic models of receptor oligomerization by bivalent ligand
Abstract
In this paper, we develop stochastic models of receptor binding by a bivalent ligand. A detailed kinetic study allows us to analyse the role of cross-linking in cell activation by receptor oligomerization. We show how oligomer formation could act to buffer intracellular signalling against stochastic fluctuations. In addition, we put forward the hypothesis that formation of long linear oligomers increases the range of ligand concentration to which the cell is responsive, whereas formation of closed oligomers increases ligand concentration specificity. Thus, different physiological functions requiring different degrees of specificity to ligand concentration would favour formation of oligomers with different lengths and geometries. Furthermore, provided that ligand concentration specificity is taken as a design principle, our model enables us to estimate parameters, such as the minimum proportion of receptors, that must engage in oligomer formation in order to trigger a cellular response.
Figures
















Similar articles
-
Quantifying the phosphorylation timescales of receptor-ligand complexes: a Markovian matrix-analytic approach.Open Biol. 2018 Sep 19;8(9):180126. doi: 10.1098/rsob.180126. Open Biol. 2018. PMID: 30232099 Free PMC article.
-
A Monte Carlo study of the dynamics of G-protein activation.Biophys J. 1994 Sep;67(3):1345-57. doi: 10.1016/S0006-3495(94)80606-X. Biophys J. 1994. PMID: 7811949 Free PMC article.
-
The adhesion between a microvillus-bearing cell and a ligand-coated substrate: a Monte Carlo study.Ann Biomed Eng. 2007 Mar;35(3):397-407. doi: 10.1007/s10439-006-9221-6. Epub 2006 Dec 7. Ann Biomed Eng. 2007. PMID: 17151923
-
Measuring receptor/ligand interaction at the single-bond level: experimental and interpretative issues.Ann Biomed Eng. 2002 Mar;30(3):305-14. doi: 10.1114/1.1467923. Ann Biomed Eng. 2002. PMID: 12051616 Review.
-
Analytic methods for modeling stochastic regulatory networks.Methods Mol Biol. 2012;880:273-322. doi: 10.1007/978-1-61779-833-7_13. Methods Mol Biol. 2012. PMID: 23361990 Review.
Cited by
-
Genetic noise control via protein oligomerization.BMC Syst Biol. 2008 Nov 3;2:94. doi: 10.1186/1752-0509-2-94. BMC Syst Biol. 2008. PMID: 18980697 Free PMC article.
-
Quantifying the phosphorylation timescales of receptor-ligand complexes: a Markovian matrix-analytic approach.Open Biol. 2018 Sep 19;8(9):180126. doi: 10.1098/rsob.180126. Open Biol. 2018. PMID: 30232099 Free PMC article.
-
Noise in cellular signaling pathways: causes and effects.Trends Biochem Sci. 2012 May;37(5):173-8. doi: 10.1016/j.tibs.2012.01.001. Epub 2012 Feb 15. Trends Biochem Sci. 2012. PMID: 22341496 Free PMC article. Review.
-
Monte Carlo study of B-cell receptor clustering mediated by antigen crosslinking and directed transport.Cell Mol Immunol. 2011 May;8(3):255-64. doi: 10.1038/cmi.2011.3. Epub 2011 Feb 28. Cell Mol Immunol. 2011. PMID: 21358668 Free PMC article.
-
Pharmacogenomics of EGFR-targeted therapies in non-small cell lung cancer: EGFR and beyond.Chin J Cancer. 2015 Apr 8;34(4):149-60. doi: 10.1186/s40880-015-0007-9. Chin J Cancer. 2015. PMID: 25962919 Free PMC article. Review.
References
-
- Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Garland; New York: 2002. Molecular biology of the cell.
-
- Banu Y, Watanabe T. Augmentation of antigen receptor-mediated responses by histamine H1 receptor signalling. J. Exp. Med. 1999;189:673–682. doi:10.1084/jem.189.4.673 - DOI - PMC - PubMed
-
- Burrage K, Tian T, Burrage P. A multi-scaled approach for simulating chemical reaction systems. Prog. Biophys. Mol. Biol. 2004;85:217–234. doi:10.1016/j.pbiomolbio.2004.01.014 - DOI - PubMed
-
- Durrett R, Levin S. The importance of being discrete (and spatial) Theor. Popul. Biol. 1994;46:363–394. doi:10.1006/tpbi.1994.1032 - DOI
-
- Gardiner C.W. Springer; Berlin: 1983. Handbook of stochastic methods.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources