Barttin modulates trafficking and function of ClC-K channels
- PMID: 16849430
- PMCID: PMC1544099
- DOI: 10.1073/pnas.0601631103
Barttin modulates trafficking and function of ClC-K channels
Abstract
Barttin is an accessory subunit of a subgroup of ClC-type chloride channels expressed in renal and inner ear epithelia. In this study, we examined the effects of barttin on two ClC-K channel isoforms, rat ClC-K1 and human ClC-Kb, using heterologous expression, patch clamping, confocal imaging, and flow cytometry. In the absence of barttin, only a small percentage of rClC-K1 and hClC-Kb channels are inserted into the plasma membrane. Coexpression of barttin enhances surface membrane insertion and furthermore modifies permeation and gating of ClC-K channels. hClC-Kb channels are nonfunctional without barttin and require the coexpressed accessory subunit to become anion conducting. In contrast, rClC-K1 channels are active without barttin, but at the cost of reduced unitary conductance as well as altered voltage dependence of activation. We mapped the separate functions of barttin to structural domains by a deletion analysis. Whereas the transmembrane core is necessary and sufficient to promote ClC-K channel exit from the endoplasmic reticulum, a short cytoplasmic segment following the second transmembrane helix modifies the unitary conductance. The entire cytoplasmic carboxyl terminus affects the open probability of ClC-K channels. The multiple functions of barttin might be necessary for a tight adjustment of epithelial Cl(-) conductances to ensure a precise regulation of body salt content and endocochlear potential.
Conflict of interest statement
Conflict of interest statement: No conflicts declared.
Figures





Similar articles
-
Tryptophan Scanning Mutagenesis Identifies the Molecular Determinants of Distinct Barttin Functions.J Biol Chem. 2015 Jul 24;290(30):18732-43. doi: 10.1074/jbc.M114.625376. Epub 2015 Jun 10. J Biol Chem. 2015. PMID: 26063802 Free PMC article.
-
Carboxyl-terminal Truncations of ClC-Kb Abolish Channel Activation by Barttin Via Modified Common Gating and Trafficking.J Biol Chem. 2015 Dec 18;290(51):30406-16. doi: 10.1074/jbc.M115.675827. Epub 2015 Oct 9. J Biol Chem. 2015. PMID: 26453302 Free PMC article.
-
Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.J Biol Chem. 2018 Jun 1;293(22):8626-8637. doi: 10.1074/jbc.RA117.000860. Epub 2018 Apr 19. J Biol Chem. 2018. PMID: 29674316 Free PMC article.
-
Mechanisms of Disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance.Nat Clin Pract Nephrol. 2008 Jan;4(1):38-46. doi: 10.1038/ncpneph0689. Nat Clin Pract Nephrol. 2008. PMID: 18094726 Review.
-
Molecular physiology of renal ClC chloride channels/transporters.Curr Opin Nephrol Hypertens. 2006 Sep;15(5):511-6. doi: 10.1097/01.mnh.0000242177.36953.be. Curr Opin Nephrol Hypertens. 2006. PMID: 16914964 Review.
Cited by
-
Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional.J Biol Chem. 2015 Jul 10;290(28):17390-400. doi: 10.1074/jbc.M114.631705. Epub 2015 May 26. J Biol Chem. 2015. PMID: 26013830 Free PMC article.
-
Molecular pathophysiology of Bartter's and Gitelman's syndromes.World J Pediatr. 2015 May;11(2):113-25. doi: 10.1007/s12519-015-0016-4. Epub 2015 Mar 9. World J Pediatr. 2015. PMID: 25754753 Review.
-
Discovery of CLC transport proteins: cloning, structure, function and pathophysiology.J Physiol. 2015 Sep 15;593(18):4091-109. doi: 10.1113/JP270043. Epub 2015 Aug 24. J Physiol. 2015. PMID: 25590607 Free PMC article. Review.
-
ClC-K Kidney Chloride Channels: From Structure to Pathology.Handb Exp Pharmacol. 2024;283:35-58. doi: 10.1007/164_2023_635. Handb Exp Pharmacol. 2024. PMID: 36811727
-
Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion.Pflugers Arch. 2022 Jan;474(1):155-176. doi: 10.1007/s00424-021-02649-5. Epub 2021 Dec 30. Pflugers Arch. 2022. PMID: 34966955 Review.
References
-
- Hebert S. C. Curr. Opin. Nephrol. Hypertens. 2003;12:527–532. - PubMed
-
- Birkenhager R., Otto E., Schurmann M. J., Vollmer M., Ruf E. M., Maier-Lutz I., Beekmann F., Fekete A., Omran H., Feldmann D., et al. Nat. Genet. 2001;29:310–314. - PubMed
-
- Estevez R., Boettger T., Stein V., Birkenhager R., Otto E., Hildebrandt F., Jentsch T. J. Nature. 2001;414:558–561. - PubMed
-
- Waldegger S., Jeck N., Barth P., Peters M., Vitzthum H., Wolf K., Kurtz A., Konrad M., Seyberth H. W. Pflügers Arch. 2002;444:411–418. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases