Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 1;177(3):1552-60.
doi: 10.4049/jimmunol.177.3.1552.

Pertussis toxin reduces the number of splenic Foxp3+ regulatory T cells

Affiliations

Pertussis toxin reduces the number of splenic Foxp3+ regulatory T cells

Cécile Cassan et al. J Immunol. .

Abstract

Pertussis toxin (PTx) is a bacterial toxin used to enhance the severity of experimental autoimmune diseases such as experimental autoimmune encephalomyelitis. It is known to promote permeabilization of the blood-brain barrier, maturation of APC, activation of autoreactive lymphocytes and alteration of lymphocyte migration. In this study, we show that i.v. injection of PTx in mice induces a decrease in the number of splenic CD4(+)CD25(+) regulatory T cells (Treg cells). Furthermore, PTx not only induces a depletion of the dominant CD4(+)CD25(+)Foxp3(+) subpopulation of splenic Treg cells, but also reduces to a similar extent the CD4(+)CD25(-)Foxp3(+) subpopulation. On a per cell basis, the suppressive properties of the remaining Treg cells are not modified by PTx treatment. The reduction in splenic Treg cells is associated with preferential migration of these cells to the liver. Additionally, Treg cells exhibit a high sensitivity to PTx-mediated apoptosis in vitro. Finally, in vivo depletion of Treg cells by injection of an anti-CD25 Ab, and PTx treatment, present synergistic experimental autoimmune encephalomyelitis exacerbating effects. Therefore, we identify a new effect of PTx and provide an additional illustration of the influence of microbial components on the immune system affecting the balance between tolerance, inflammation and autoimmunity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources