Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 28;109(16):7821-5.
doi: 10.1021/jp047439o.

Electrochemical/electrospray mass spectrometric studies of I- and SCN- at gold and platinum electrodes: direct detection of (SCN)3-

Affiliations

Electrochemical/electrospray mass spectrometric studies of I- and SCN- at gold and platinum electrodes: direct detection of (SCN)3-

Tan Guo et al. J Phys Chem B. .

Abstract

Results on the electrochemistry of I- and SCN- at gold and platinum electrodes using an electrochemical cell coupled to an electrospray mass spectrometer are reported. We demonstrate that our apparatus is capable of these very challenging electrochemical/electrospray experiments and that B(C6H5)4- is a suitable internal standard for negative-ion studies in acetonitrile. With I- at a platinum electrode, we observe well-behaved oxidation to I3-. Experiments on I- at gold electrodes are more complex, showing AuI2- as well as I3-. The AuI2- mass spectrometric ion intensity varies in a complex way throughout the applied electrochemical voltage range studied; we propose that this variation involves the adsorption of I- on the gold electrode surface. In experiments on SCN- from (C4H9)4NSCN at gold electrodes, we observe Au(SCN)2-. Finally, at platinum electrodes, we directly observe (SCN)3-, a species analogous to I3- and (CN)3- that has been previously postulated but unverified. This important finding was confirmed by the isotope pattern and demonstrates the stability of the anion.

PubMed Disclaimer

LinkOut - more resources