Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 26;109(20):10234-42.
doi: 10.1021/jp044120v.

A study of the surface region of the Mo-V-Te-O catalysts for propane oxidation to acrylic acid

Affiliations

A study of the surface region of the Mo-V-Te-O catalysts for propane oxidation to acrylic acid

Vadim V Guliants et al. J Phys Chem B. .

Abstract

The bulk mixed Mo-V-Te oxides possess high activity and selectivity in propane oxidation to acrylic acid and represent well-defined model catalysts for studies of the surface molecular structure-activity/selectivity relationships in this selective oxidation reaction. The elemental compositions, metal oxidation states, and catalytic functions of V, Mo, and Te in the surface region of the model Mo-V-Te-O system were examined employing low energy ion scattering (LEIS) and X-ray photoelectron spectroscopy (XPS). This study indicated that the surfaces of these catalysts are terminated with a monolayer, which possesses a different elemental composition from that of the bulk. The rates of propane consumption and formation of propylene and acrylic acid depended on the topmost surface V concentration, whereas no dependence of these reaction rates on either the surface Mo or Te concentrations was observed. These findings suggested that the bulk Mo-V-Te-O structure may function as a support for the unique active and selective surface monolayer in propane oxidation to acrylic acid. The results of this study have important practical consequences for the development of improved selective oxidation catalysts by introducing surface metal oxide components to form new surface active V-O-M sites for propane oxidation to acrylic acid.

PubMed Disclaimer

LinkOut - more resources