Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 25;109(33):16052-61.
doi: 10.1021/jp052848l.

Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-

Affiliations

Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3-/I-

Ryu Abe et al. J Phys Chem B. .

Abstract

A new type of photocatalytic reaction that splits water into H2 and O2 was designed using a two-step photoexcitation system composed of an iodate/iodide (IO3-/I-) shuttle redox mediator and two different photocatalysts, one for H2 evolution and the other for O2 evolution. Photocatalytic oxidation of water to O2 and reduction of IO3- to I- selectively proceeded with good efficiencies over TiO2-rutile and Pt-WO3 photocatalysts under UV and visible light irradiations, respectively. The O2 evolution selectively proceeded even in the presence of a considerable amount of I- in the solutions, although the oxidation of water is thermodynamically less favorable than oxidation of I-. Both the adsorption property of IO3- anions and the oxidation property of the photocatalysts are doubtless responsible for the selective oxidation of water. On the other hand, photocatalytic reduction of water to H2 and oxidation of I- to IO3- proceeded over Pt-TiO2-anatase and Pt-SrTiO3:Cr/Ta (codoped with Cr and Ta) photocatalysts under UV and visible light, respectively. The combination of two different photocatalysts results in a stoichiometric evolution of H2 and O2 via the redox cycle of IO3- and I-. The photocatalytic water splitting under visible light irradiation (lambda > 420 nm) was demonstrated by using the Pt-SrTiO3:Cr/Ta, Pt-WO3, and IO3-/I- shuttle redox mediator.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources