Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 1;109(47):22413-9.
doi: 10.1021/jp052792v.

Determination of the light-induced degradation rate of the solar cell sensitizer N719 on TiO2 nanocrystalline particles

Affiliations

Determination of the light-induced degradation rate of the solar cell sensitizer N719 on TiO2 nanocrystalline particles

Farahnaz Nour-Mohhamadi et al. J Phys Chem B. .

Abstract

The oxidative degradation rate, kdeg, of the solar cell dye (Bu4N+)2[Ru(dcbpyH)2(NCS)2]2-, referred to as N719 or [RuL2(NCS)2], was obtained by applying a simple model system. Colloidal solutions of N719-dyed TiO2 particles in acetonitrile were irradiated with 532-nm monochromatic light, and the sum of the quantum yields for the oxidative degradation products [RuL2(CN)2], [RuL2(NCS)(CN)], and [RuL2(NCS)(ACN)], Phideg, was obtained at eight different light intensities in the range of 0.1-16.30 mW/cm2 by LC-UV-MS. The Phideg values decreased from 3.3 x 10-3 to 2.0 x 10-4 in the applied intensity range. By using the relation kdeg = Phidegkback and back electron-transfer reaction rates, kback, obtained with photoinduced absorption spectroscopy, it was possible to calculate an average value for the oxidative degradation rate of N719 dye attached to TiO2 particles, kdeg = 4.0 x 10-2 s-1. The stability of N719 dye during solar cell operation was discussed based on this number, and on values of the electron-transfer rate between [Ru(III)L2(NCS)2] and iodide ion that are available in the literature.

PubMed Disclaimer

LinkOut - more resources