Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance
- PMID: 16854453
- DOI: 10.1016/j.advenzreg.2006.01.004
Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance
Abstract
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip-1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip-1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.
Similar articles
-
Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.Biochim Biophys Acta. 2007 Aug;1773(8):1263-84. doi: 10.1016/j.bbamcr.2006.10.001. Epub 2006 Oct 7. Biochim Biophys Acta. 2007. PMID: 17126425 Free PMC article. Review.
-
Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells.Cancer Detect Prev. 2001;25(4):375-93. Cancer Detect Prev. 2001. PMID: 11531015
-
Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells.Oncogene. 2003 Apr 24;22(16):2478-92. doi: 10.1038/sj.onc.1206321. Oncogene. 2003. PMID: 12717425
-
Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia.Leukemia. 2003 Jun;17(6):1058-67. doi: 10.1038/sj.leu.2402925. Leukemia. 2003. PMID: 12764369
-
Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia.Leukemia. 2008 Apr;22(4):686-707. doi: 10.1038/leu.2008.26. Epub 2008 Mar 13. Leukemia. 2008. PMID: 18337767 Review.
Cited by
-
Profiling invasiveness in head and neck cancer: recent contributions of genomic and transcriptomic approaches.Cancers (Basel). 2015 Mar 31;7(2):585-97. doi: 10.3390/cancers7020585. Cancers (Basel). 2015. PMID: 25836654 Free PMC article. Review.
-
Advanced Hepatocellular Cancer: the Current State of Future Research.Curr Treat Options Oncol. 2016 Aug;17(8):43. doi: 10.1007/s11864-016-0415-3. Curr Treat Options Oncol. 2016. PMID: 27344158 Review.
-
Relevance Function of Linc-ROR in the Pathogenesis of Cancer.Front Cell Dev Biol. 2020 Aug 11;8:696. doi: 10.3389/fcell.2020.00696. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 32850817 Free PMC article. Review.
-
Prognostic significance of PLIN1 expression in human breast cancer.Oncotarget. 2016 Aug 23;7(34):54488-54502. doi: 10.18632/oncotarget.10239. Oncotarget. 2016. PMID: 27359054 Free PMC article.
-
Lapatinib dysregulates HER2 signaling and impairs the viability of human uveal melanoma cells.J Cancer. 2023 Oct 16;14(18):3477-3495. doi: 10.7150/jca.88446. eCollection 2023. J Cancer. 2023. PMID: 38021158 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous