Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug;36(8):401-5.
doi: 10.1016/j.medmal.2006.05.005. Epub 2006 Jul 18.

[Antimalarial drug resistance]

[Article in French]
Affiliations
Review

[Antimalarial drug resistance]

[Article in French]
J Le Bras et al. Med Mal Infect. 2006 Aug.

Abstract

Drug resistant malaria is mostly due to Plasmodium falciparum, the highly prevalent species in tropical Africa, Amazon, and Southeast Asia. P. falciparum is responsible for severe involvement of fever or anemia causing more than a million deaths per year. Rationale for treatment is becoming weak as multiple drug resistance against well-tolerated drugs develops. P. falciparum drug resistant malaria originates from chromosomal mutations. Analyses using molecular, genetic and biochemical approaches showed that: 1) impaired uptake of chloroquine by the parasite vacuole is a common characteristic of resistant strains, this phenotype correlates with pfmdr1 and pfcrt gene mutations; 2) one S108N to four (N51I, C59R, I164L) point mutations of dihydrofolate reductase, the enzyme target of antifolinics (pyrimethamine and proguanil), give moderate to high level of resistance to these drugs; 3) resistance to sulfonamides and sulfones involves mutations of dihydropteroate synthase (A437G, K540E), their enzyme target, impairing their capacity to potentiate antifolinic drugs; 4) resistance to atovaquone plus proguanil involves one single mutation on atovaquone target, cytochrome b (Y268S, C or N); 5) resistance to mefloquine is thought to be linked to the over expression of pfmdr1, a pump expelling toxic waste from eukaryotic cells. P. falciparum resistance levels may differ according to places and time, depending on malaria transmission and drug pressure. Coupling in vivo to in vitro tests, and using molecular tests is essential for the surveillance of replacement drugs. Low cost biochemical tools are urgently needed for a prospective monitoring of resistance.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources