Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 15;281(37):27046-51.
doi: 10.1074/jbc.M602467200. Epub 2006 Jul 19.

Retention of core catalytic functions by a conserved minimal ribonuclease E peptide that lacks the domain required for tetramer formation

Affiliations
Free article

Retention of core catalytic functions by a conserved minimal ribonuclease E peptide that lacks the domain required for tetramer formation

Jonathan M Caruthers et al. J Biol Chem. .
Free article

Abstract

Ribonuclease E (RNase E) is a multifunctional endoribonuclease that has been evolutionarily conserved in both Gram-positive and Gram-negative bacteria. X-ray crystallography and biochemical studies have concluded that the Escherichia coli RNase E protein functions as a homotetramer formed by Zn linkage of dimers within a region extending from amino acid residues 416 through 529 of the 116-kDa protein. Using fragments of RNase E proteins from E. coli and Haemophilus influenzae, we show here that RNase E derivatives that are as short as 395 amino acid residues and that lack the Zn-link region shown previously to be essential for tetramer formation (i.e. amino acid residues 400-415) are catalytically active enzymes that retain the 5' to 3' scanning ability and cleavage site specificity characteristic of full-length RNase E and that also confer colony forming ability on rne null mutant bacteria. Further truncation leads to loss of these properties. Our results, which identify a minimal catalytically active RNase E sequence, indicate that contrary to current models, a tetrameric quaternary structure is not required for RNase E to carry out its core enzymatic functions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources