Behavioral sensitization, alternative splicing, and d3 dopamine receptor-mediated inhibitory function
- PMID: 16855531
- PMCID: PMC1815380
- DOI: 10.1038/sj.npp.1301163
Behavioral sensitization, alternative splicing, and d3 dopamine receptor-mediated inhibitory function
Abstract
Behavioral sensitization, the progressive and enduring augmentation of certain behaviors following repetitive drug use, alters rodent locomotion in a long-standing manner. The same dopamine pathways playing an important role in drug dependence and psychosis also play a critical role in sensitization. Individual dopamine receptor subtypes have markedly different functional responses to stimulation, with D3 dopamine receptor stimulation inhibiting rodent locomotion. The D3 receptor has highest affinity of the dopamine receptor subtypes for dopamine, and is occupied to a greater degree following stimulant drug administration. D3 receptor activity may be regulated through the expression of an alternatively spliced, truncated receptor isoform (termed 'D3nf') altering receptor localization and function via dimerization with the full-length subunit. The expected physiological response to repetitive drug administration is tolerance. Tolerance of D3 receptor inhibition of locomotion would contribute to sensitization to stimulant drugs. We hypothesize that repetitive D3 receptor stimulation contributes to the development of behavioral sensitization through decreased responsivity of D3-receptor-mediated locomotor inhibition. Increased D3nf expression may direct altered receptor localization and subsequent release of D3-receptor-mediated inhibition, contributing to the expression of sensitization. These hypotheses follow directly from the affinities of the receptor subtypes for dopamine; dopamine concentrations following stimulant administration; the effects of individual dopamine receptor subtype stimulation on locomotion; and the expected homeostatic response of the system to perturbation by drug. Clarifying these mechanisms underlying sensitization may suggest new interventions for neuropsychiatric conditions in which dopamine plays an important role, including psychosis, drug dependence, and Parkinson's disease. This information may also elucidate a previously unrecognized mechanism regulating receptor trafficking and desensitization.
Figures



Similar articles
-
Altered behavioral response to dopamine D3 receptor agonists 7-OH-DPAT and PD 128907 following repetitive amphetamine administration.Neuropsychopharmacology. 2003 Aug;28(8):1422-32. doi: 10.1038/sj.npp.1300182. Epub 2003 Apr 16. Neuropsychopharmacology. 2003. PMID: 12700693
-
The D3 dopamine receptor and substance dependence.J Addict Dis. 2001;20(3):19-32. doi: 10.1300/J069v20n03_03. J Addict Dis. 2001. PMID: 11681590 Review.
-
D3 dopamine receptor, behavioral sensitization, and psychosis.Neurosci Biobehav Rev. 2001 Jul;25(5):427-43. doi: 10.1016/s0149-7634(01)00023-9. Neurosci Biobehav Rev. 2001. PMID: 11566480 Review.
-
The dopamine D3 receptor antagonist nafadotride inhibits development of locomotor sensitization to amphetamine.Brain Res. 2000 Jun 9;867(1-2):239-42. doi: 10.1016/s0006-8993(00)02247-2. Brain Res. 2000. PMID: 10837819
-
Dopamine D3 receptor knock-out mice display deficits in locomotor sensitization after chronic morphine administration.Neurosci Lett. 2010 Nov 26;485(3):256-60. doi: 10.1016/j.neulet.2010.09.025. Epub 2010 Sep 16. Neurosci Lett. 2010. PMID: 20849922
Cited by
-
Reducing Addiction in Bipolar Disorder via Hacking the Dopaminergic System.Front Psychiatry. 2021 Dec 14;12:803208. doi: 10.3389/fpsyt.2021.803208. eCollection 2021. Front Psychiatry. 2021. PMID: 34970175 Free PMC article. Review.
-
Altered dopamine D2-like receptor binding in rats with behavioral sensitization to quinpirole: effects of pre-treatment with Ro 41-1049.Eur J Pharmacol. 2008 Sep 11;592(1-3):67-72. doi: 10.1016/j.ejphar.2008.06.101. Epub 2008 Jul 4. Eur J Pharmacol. 2008. PMID: 18644362 Free PMC article.
-
Dopaminergic regulation of dopamine D3 and D3nf receptor mRNA expression.Synapse. 2010 Aug;64(8):634-43. doi: 10.1002/syn.20770. Synapse. 2010. PMID: 20340170 Free PMC article.
-
Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders.Biomolecules. 2021 Jan 14;11(1):104. doi: 10.3390/biom11010104. Biomolecules. 2021. PMID: 33466844 Free PMC article. Review.
-
Fine-mapping reveals novel alternative splicing of the dopamine transporter.Am J Med Genet B Neuropsychiatr Genet. 2010 Dec 5;153B(8):1434-47. doi: 10.1002/ajmg.b.31125. Epub 2010 Oct 18. Am J Med Genet B Neuropsychiatr Genet. 2010. PMID: 20957647 Free PMC article.
References
-
- Ackerman JM, White FJ. A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci Lett. 1990;117:181–187. - PubMed
-
- Bell DS. The experimental reproduction of amphetamine psychosis. Arch Gen Psychiatry. 1973;29:35–40. - PubMed
-
- Bjijou Y, Stinus L, Le Moal M, Cador M. Evidence for selective involvement of dopamine D1 receptors of the ventral tegmental area in the behavioral sensitization induced by intraventral tegmental area injections of d-amphetamine. J Pharmacol Exp Ther. 1996;277:1177–1187. - PubMed
-
- Bouthenet ML, Souil E, Martres MP, Sokoloff P, Giros B, Schwartz JC. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 1991;564:203–219. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources