Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Nov;31(11):2332-40.
doi: 10.1038/sj.npp.1301159. Epub 2006 Jul 19.

Neural substrates of psychostimulant-induced arousal

Affiliations
Free article
Review

Neural substrates of psychostimulant-induced arousal

Craig W Berridge. Neuropsychopharmacology. 2006 Nov.
Free article

Abstract

Extensive research has provided substantial insight into the neurobiological mechanisms underlying the reinforcing, locomotor-activating and stereotypy-inducing actions of psychostimulants. The diverse behavioral effects of these drugs are superimposed on potent arousal-enhancing actions. Psychostimulant-induced arousal is a prominent contributing factor to the widespread use and abuse of these drugs. Moreover, enhanced arousal may be a critical component of the reinforcing and other behavioral actions of these drugs. Although long overlooked, recent work begins to identify the neural mechanisms involved in psychostimulant-induced arousal. For example, microdialysis studies demonstrate a close relationship between amphetamine-induced waking/arousal and amphetamine-induced increases in norepinephrine and dopamine efflux. Additionally, it is now clear that both norepinephrine and dopamine exert robust wake-promoting actions. The wake-promoting effects of norepinephrine involve synergistic actions of alpha1- and beta-receptors, whereas dopamine-induced waking involves both D1 and D2 receptors. Finally, additional studies have identified subcortical regions involved in the wake-promoting actions of both norepinephrine and amphetamine. These regions include, but may not be limited to, the medial septal area, the medial preoptic area, and the lateral hypothalamus. Combined, these and other observations indicate a prominent involvement of both norepinephrine and dopamine in stimulant-induced arousal via actions within a network of subcortical regions. Although it is clear that both norepinephrine and dopamine contribute to psychostimulant-induced arousal, the degree to which each transmitter system is necessary for the expression of stimulant-induced arousal remains to be fully elucidated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources