Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug;34(Pt 4):600-4.
doi: 10.1042/BST0340600.

Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain

Affiliations
Review

Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain

J Soulé et al. Biochem Soc Trans. 2006 Aug.

Abstract

Interest in BDNF (brain-derived neurotrophic factor) as an activity-dependent modulator of neuronal structure and function in the adult brain has intensified in recent years. Localization of BDNF and its receptor tyrosine kinase TrkB (tropomyosin receptor kinase B) to glutamate synapses makes this system attractive as a dynamic, activity-dependent regulator of excitatory transmission and synaptic plasticity in the adult brain. Development of stable LTP (long-term potentiation) in response to high-frequency stimulation requires new gene expression and protein synthesis, a process referred to as synaptic consolidation. Several lines of evidence have implicated endogenous BDNF-TrkB signalling in synaptic consolidation. This mini-review emphasizes new insights into the molecular mechanisms underlying this process. The immediate early gene Arc (activity-regulated cytoskeleton-associated protein) is strongly induced and transported to dendritic processes after LTP induction in the dentate gyrus in live rats. Recent work suggests that sustained synthesis of Arc during a surprisingly protracted time-window is required for hyperphosphorylation of actin-depolymerizing factor/cofilin and local expansion of the actin cytoskeleton in vivo. Moreover, this process of Arc-dependent synaptic consolidation is activated in response to brief infusion of BDNF. Microarray expression profiling has also revealed a panel of BDNF-regulated genes that may co-operate with Arc during LTP maintenance. In addition to regulating gene expression, BDNF signalling modulates the fine localization and biochemical activation of the translation machinery. By modulating the spatial and temporal translation of newly induced (Arc) and constitutively expressed mRNA in neuronal dendrites, BDNF may effectively control the window of synaptic consolidation. These findings have implications for mechanisms of memory storage and mood control.

PubMed Disclaimer

Similar articles

Cited by

Substances