Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul 20:1:22.
doi: 10.1186/1748-717X-1-22.

Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

Affiliations
Review

Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview

Damien C Weber et al. Radiat Oncol. .

Abstract

Postoperative radiation therapy substantially decreases local relapse and moderately reduces breast cancer mortality, but can be associated with increased late mortality due to cardiovascular morbidity and secondary malignancies. Sophistication of breast irradiation techniques, including conformal radiotherapy and intensity modulated radiation therapy, has been shown to markedly reduce cardiac and lung irradiation. The delivery of more conformal treatment can also be achieved with particle beam therapy using protons. Protons have superior dose distributional qualities compared to photons, as dose deposition occurs in a modulated narrow zone, called the Bragg peak. As a result, further dose optimization in breast cancer treatment can be reasonably expected with protons. In this review, we outline the potential indications and benefits of breast cancer radiotherapy with protons. Comparative planning studies and preliminary clinical data are detailed and future developments are considered.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Cumulative dose-volume histograms for the conventional photon (Conventional), the intensity modulated treatment (IMRT 1–2) and the proton (Protons) plans for the breast and the breast and regional lymph nodes [33].
Figure 2a
Figure 2a
Cumulative dose-volume histograms for the conventional photon (Conventional), the intensity modulated treatment (IMRT 1–2) and theproton (Protons) plans for the heart [33]. (B) Cumulative dose-volume histograms for the conventional photon (Conventional), the intensity modulated treatment (IMRT 1–2) and the proton (Protons) plans for the ipsilateral lung [33].
Figure 3
Figure 3
Dose distribution (protons) in an axial CT slice through the center of the breast for an early breast cancer patient treated with partial breast irradiation. The isodose contours are represented by different colors (corresponding values are displayed on the upper-right border of the figure).

References

    1. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans E, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366:2087–106. - PubMed
    1. Li J, Freedman G, Price R, Wang L, Anderson P, Chen L, Xiong W, Yang J, Pollack A, Ma C. Clinical implementation of intensity-modulated tangential beam irradiation for breast cancer. Med Phys. 2004;31:1023–31. doi: 10.1118/1.1690195. - DOI - PubMed
    1. Thilmann C, Sroka-Perez G, Krempien R, Hoess A, Wannenmacher M, Debus J. Inversely planned intensity modulated radiotherapy of the breast including the internal mammary chain: a plan comparison study. Technol Cancer Res Treat. 2004;3:69–75. - PubMed
    1. Krueger EA, Fraass BA, McShan DL, Marsh R, Pierce LJ. Potential gains for irradiation of chest wall and regional nodes with intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2003;56:1023–37. doi: 10.1016/S0360-3016(03)00183-4. - DOI - PubMed
    1. Freedman GM, Anderson PR, Li J, Eisenberg DF, Hanlon AL, Wang L, Nicolaou N. Intensity modulated radiation therapy (IMRT) decreases acute skin toxicity for women receiving radiation for breast cancer. Am J Clin Oncol. 2006;29:66–70. doi: 10.1097/01.coc.0000197661.09628.03. - DOI - PubMed