Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;319(2):703-9.
doi: 10.1124/jpet.106.109173. Epub 2006 Jul 20.

Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of human chronic users of methamphetamine

Affiliations

Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of human chronic users of methamphetamine

Paul S Fitzmaurice et al. J Pharmacol Exp Ther. 2006 Nov.

Abstract

Animal studies suggest that the widely used psychostimulant drug methamphetamine (MA) can harm brain dopamine neurones, possibly by causing oxidative damage. However, evidence of oxidative damage in brain of human MA users is lacking. We tested the hypothesis that levels of two "gold standard" products generated from lipid peroxidation, 4-hydroxynonenal (one of the most reactive lipid peroxidation aldehyde products) and malondialdehyde, would be elevated in post mortem brain of 16 dopamine-deficient chronic MA users compared with those in 21 matched control subjects. Derivatized aldehyde concentrations were determined by gas chromatography-mass spectrometry. In the MA group, we found significantly increased levels of 4-hydroxynonenal and malondialdehyde in the dopamine-rich caudate nucleus (by 67 and 75%, respectively) and to a lesser extent in frontal cortex (48 and 36%, respectively) but not in the cerebellar cortex. Approximately half of the MA users had levels of 4-hydroxynonenal falling above the upper limit of the control range in caudate and frontal cortex. A subgroup of MA users with high brain drug levels had higher concentrations of the aldehydes. Our data suggest that MA exposure in human causes, as in experimental animals, above-normal formation of potentially toxic lipid peroxidation products in brain. This provides evidence for involvement of oxygen-based free radicals in the action of MA in both dopamine-rich (caudate) and -poor (cerebral cortex) areas of human brain.

PubMed Disclaimer

Publication types

LinkOut - more resources