Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 15;281(37):27317-26.
doi: 10.1074/jbc.M605560200. Epub 2006 Jul 21.

Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1

Affiliations
Free article

Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1

Carla V Finkielstein et al. J Biol Chem. .
Free article

Abstract

The Rho guanosine triphosphatases (GTPases) control cell shape and motility and are frequently overexpressed during malignant growth. These proteins act as molecular switches cycling between active GTP- and inactive GDP-bound forms. Despite being membrane anchored via their isoprenylated C termini, Rho GTPases rapidly translocate between membrane and cytosolic compartments. Here, we show that the Rho GTPase Rac1 preferentially interacts with phosphatidylserine (PS)-containing bilayers through its polybasic motif (PBM). Rac1 isoprenylation contributes to membrane avidity but is not critical for PS recognition. The similar protein Cdc42 (cell division cycle 42), however, only associates with PS when prenylated. Conversely, other Rho GTPases such as Rac2, Rac3, and RhoA do not bind to PS even when they are prenylated. Cell stimulation with PS induces translocation of Rac1 toward the plasma membrane and stimulates GTP loading, membrane ruffling, and filopodia formation. This stimulation also promotes Cdc42 activation and phosphorylation of mitogen-activated protein kinase through Rac1/PS signaling. Consequently, the PBM specifically directs Rac1 to effect cytoskeletal rearrangement and cell migration by selective membrane phospholipid targeting.

PubMed Disclaimer

Publication types

LinkOut - more resources