Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 17;442(7104):814-7.
doi: 10.1038/nature04976. Epub 2006 Jul 16.

Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology

Affiliations

Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology

Yong Kim et al. Nature. .

Abstract

WAVE1--the Wiskott-Aldrich syndrome protein (WASP)--family verprolin homologous protein 1--is a key regulator of actin-dependent morphological processes in mammals, through its ability to activate the actin-related protein (Arp2/3) complex. Here we show that WAVE1 is phosphorylated at multiple sites by cyclin-dependent kinase 5 (Cdk5) both in vitro and in intact mouse neurons. Phosphorylation of WAVE1 by Cdk5 inhibits its ability to regulate Arp2/3 complex-dependent actin polymerization. Loss of WAVE1 function in vivo or in cultured neurons results in a decrease in mature dendritic spines. Expression of a dephosphorylation-mimic mutant of WAVE1 reverses this loss of WAVE1 function in spine morphology, but expression of a phosphorylation-mimic mutant does not. Cyclic AMP (cAMP) signalling reduces phosphorylation of the Cdk5 sites in WAVE1, and increases spine density in a WAVE1-dependent manner. Our data suggest that phosphorylation/dephosphorylation of WAVE1 in neurons has an important role in the formation of the filamentous actin cytoskeleton, and thus in the regulation of dendritic spine morphology.

PubMed Disclaimer

Publication types