Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 7;1108(1):28-38.
doi: 10.1016/j.brainres.2006.06.048. Epub 2006 Jul 24.

Involvement of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse formalin pain model

Affiliations

Involvement of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse formalin pain model

Seong-Soo Choi et al. Brain Res. .

Abstract

In the present study, we investigated the role of phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMK-II) and phosphorylated extracellular signal-regulated protein kinase (pERK) in nociceptive processing at the spinal and supraspinal levels in the formalin subcutaneous induced mouse pain model. In the immunoblot assay, subcutaneous (s.c.) injection with formalin increased the pERK and pCaMK-IIalpha level in the spinal cord, and an immunohistochemical study showed that the increase of pERK and pCaMK-IIalpha immunoreactivity mainly occurred in the laminae I and II areas of the spinal dorsal horn. At the supraspinal level, although pERK was not changed in the hippocampus induced by formalin s.c. injection, pCaMK-IIalpha was increased in the hippocampus and hypothalamus by s.c. formalin injection, and an increase of pCaMK-IIalpha immunoreactivity mainly occurred in the pyramidal cells and the stratum lucidum/radiatum layer of the CA3 region of hippocampus and paraventricular nucleus of the hypothalamus. Moreover, pERK immunoreactivity in the hypothalamic paraventricular nucleus was also increased. The second phase of nociceptive behavior induced by formalin administered either i.t. or intracerebroventricularly (i.c.v.) was attenuated by PD98059 (ERK inhibitor) as well as KN-93(a CaMK-II inhibitor). On the other hand, the first phase of nociceptive behavior induced by formalin s.c. injection was not affected by i.t. KN-93. Our results suggest that pERK and pCaMK-II located at both the spinal cord and supraspinal levels are an important regulator during the nociceptive processes induced by formalin administered s.c. respectively.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources