Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Aug 1;45(30):9219-27.
doi: 10.1021/bi060625v.

Spectroscopic and calorimetric analyses of invasion plasmid antigen D (IpaD) from Shigella flexneri reveal the presence of two structural domains

Affiliations
Comparative Study

Spectroscopic and calorimetric analyses of invasion plasmid antigen D (IpaD) from Shigella flexneri reveal the presence of two structural domains

Marianela Espina et al. Biochemistry. .

Abstract

Shigella flexneri is a facultative intracellular pathogen that causes severe gastroenteritis in humans. Invasion plasmid antigen D (IpaD) is an essential participant in Shigella invasion of intestinal cells, but no detailed structural information is available to help understand the proposed role of IpaD in invasion or its interaction with other invasion proteins. Therefore, the secondary and tertiary structure and thermal stability of IpaD as well as selected IpaD deletion mutants were investigated using Fourier transform infrared (FTIR), circular dichroism (CD), and both intrinsic and extrinsic fluorescence spectroscopies. The energetics of thermal unfolding were also evaluated by differential scanning calorimetry (DSC). Secondary-structure analysis by CD and FTIR suggests that that IpaD is primarily alpha-helical with characteristics of a intramolecular coiled coil. Thermal studies revealed that the unfolding of IpaD is a complex process consisting of two transitions centered near 59 and 80 degrees C. A comparison of the data obtained with the intact protein and selected deletion mutants indicated that the lower temperature transition is a reversible event attributable to the unfolding of a small domain located at the N terminus of IpaD. In contrast, the thermal unfolding of the proposed major and highly stable C-terminal domain was irreversible and led to protein aggregation. When the results are taken together, they strongly support the idea that IpaD has two independent folding domains.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources