Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 2;128(30):9668-75.
doi: 10.1021/ja062102g.

Chiral alpha-branched benzylic carbocations: diastereoselective intermolecular reactions with arene nucleophiles and NMR spectroscopic studies

Affiliations

Chiral alpha-branched benzylic carbocations: diastereoselective intermolecular reactions with arene nucleophiles and NMR spectroscopic studies

Friedrich Mühlthau et al. J Am Chem Soc. .

Abstract

The chiral benzylic alcohols 1-6 were prepared and subjected to S(N)1-type displacement reactions with various arene nucleophiles in acidic medium. Under optimized conditions (HBF(4).OEt(2), CH(2)Cl(2), -78 degrees C --> r.t.) the corresponding 1,1-diarylalkanes 11-18 and 20 were obtained in good chemical yields (48-99%). The facial diastereoselectivity of the reaction is high (d.r. = 91/9-97/3) when the substrate bears a stereogenic carbon center -CHtBuMe in the alpha-position to the electrophilic carbon atom. If the starting material was enantiomerically pure, no significant racemization was observed (94% ee --> 92% ee). The reactions proceed stereoconvergently as demonstrated by the conversion of the separated diastereoisomers syn-1a and anti-1a in separate reactions to the same product syn-11 (d.r. = 97/3). Further evidence for long-lived chiral benzylic carbocations as reaction intermediates was obtained from NMR studies in superacidic medium. The chiral cation 24 was generated in SO(2)ClF as the solvent at -70 degrees C employing SbF(5) as the Lewis acid and characterized by its (1)H and (13)C NMR spectra. NOE measurements suggest a preferred conformation in which the diastereotopic faces of the cation are differentiated by the two carbon substituents R and Me at the stereogenic carbon center in the alpha-position. The hypothesis is further supported by the observation that the diastereoselectivity of the substitution reaction decreases if the bulky tert-butyl (R = tBu) substituent in the substrate 1a is replaced by a smaller ethyl group (2a, R = Et).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources