Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Aug;56(5):307-11.
doi: 10.1093/occmed/kql052.

Nanomedicines and nanotoxicology: some physiological principles

Affiliations
Review

Nanomedicines and nanotoxicology: some physiological principles

M C Garnett et al. Occup Med (Lond). 2006 Aug.

Abstract

Nanosized materials have been investigated as potential medicines for several decades. Consequently, a great deal of work has been conducted on how to exploit constructs of this size range in a beneficial way. Similarly, a number of the consequences from the use of these materials have already been considered. Nanosized materials do behave differently to low-molecular-weight drugs, the biological properties of nanomaterials being mainly dependent on relevant physiology and anatomy, which are reviewed in this article. Biodistribution, movement of materials through tissues, phagocytosis, opsonization and endocytosis of nanosized materials are all likely to have an impact on potential toxicity. In turn these processes are most likely to depend on the nanoparticle surface. Evidence from the literature is considered which suggests that our understanding of these areas is incomplete, and that biodistribution to specific sites can occur for nanoparticles with particular characteristics. However, our current knowledge does indicate which areas are of concern and deserve further investigation to understand how individual nanoparticles behave and what toxicity may be expected from them.

PubMed Disclaimer

MeSH terms

LinkOut - more resources