Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;52(1):101-7.

[Molecular aspects of plant responses to oxygen deprivation stress]

[Article in Polish]
Affiliations
  • PMID: 16869308
Review

[Molecular aspects of plant responses to oxygen deprivation stress]

[Article in Polish]
Małgorzata Garnczarska. Postepy Biochem. 2006.

Abstract

Oxygen shortage--hypoxia is a common phenomenon in the environment. Plants response to such stress conditions by developing a number of morphological and metabolic strategies. These changes are usually preceded or accompanied by activation or repression of specific genes. DNA microarray technology showed that differentially expressed genes include the known anaerobic proteins as well transcriptions factors, signal transductions components, and genes that encode enzymes of pathways not known previously to be involved in low-oxygen metabolism. Selection and characterization of various mutants with altering tolerance to hypoxia provide information that help in elucidating possible signal transduction pathways that regulate responses to oxygen deficiency. Recently, many studies have been focused on the role of Rop proteins, H2O2 and Ca2+ as second messengers in hypoxia responses. Stress-induced hemoglobins may help maintaining the energy status of cells under low oxygen stress or function as dioxygenases, detoxifying NO produced during hypoxia.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources