Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975;22(2):169-78.

Oxidation processes and ubiquinone localization in the branched respiratory system of mi-1 mutant of Neurospora crassa

  • PMID: 168706

Oxidation processes and ubiquinone localization in the branched respiratory system of mi-1 mutant of Neurospora crassa

A K Drabikowska. Acta Biochim Pol. 1975.

Abstract

1. Stimulation of succinate oxidation in mi-1 mitochondria by Mg2+ and Pi is abolished on uncoupling, which points to the energy-linked activation of succinate oxidation. 2. Mitochondria exhibited respiratory control with succinate and NADH when the cyanide-insensitive oxidation was inhibited by salicylhydroxamic acid (SHAM). SHAM lowered the oxidation rate with NADH and succinate to the same level, though the NADH oxidation rate was 2.5 times as high as with succinate. 3. Despite the high stimulation of succinate oxidation via the SHAM-sensitive pathway in the active and controlled state of mitochondria, the redox state of UQ in all metabolic states remains unchanged. On inhibition of the cyanide-insensitive pathway, UQ reduction is greatly increased only in the controlled and active state. With NADH as a substrate, UQ does not respond to the metabolic states of mitochondria. 4. The redox changes of cytochrome c parallel those of UQ. 5. Branching of the respiratory chain in mi-1 mitochondria is discussed.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources