Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jul;61(7):675-84.
doi: 10.1093/gerona/61.7.675.

No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity

Affiliations

No decline in skeletal muscle oxidative capacity with aging in long-term calorically restricted rats: effects are independent of mitochondrial DNA integrity

David J Baker et al. J Gerontol A Biol Sci Med Sci. 2006 Jul.

Abstract

We investigated if calorie restriction (CR) preserved skeletal muscle oxidative capacity with aging after accounting for life span extension by CR, and determined if mitochondrial content, mitochondrial DNA integrity, and peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) were involved. Ad libitum-fed (AL) and CR animals representing young adult, late middle age, and senescence were studied. Whereas citrate synthase and complex IV activities were lower in plantaris and gastrocnemius muscle of young adult CR animals, in contrast to the 15%-40% decline in senescent AL animals, there was no decline with aging in CR animals. There was no decline in citrate synthase protein in gastrocnemius with aging in either group, suggesting that CR preserves oxidative capacity with aging by protecting mitochondrial function rather than content. This protection was independent of mitochondrial DNA damage between groups. However, there was a slower decline in PGC-1alpha gene expression with aging in CR versus AL animals, suggesting a better maintenance of mitochondrial biogenesis with aging in CR animals.

PubMed Disclaimer

Publication types

LinkOut - more resources