Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;58(3):673-7.
doi: 10.1093/jac/dkl297. Epub 2006 Jul 26.

Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis

Affiliations

Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis

Ryoichi Saito et al. J Antimicrob Chemother. 2006 Sep.

Abstract

Objectives: We conducted a study to determine the role played by amino acid mutations in DNA gyrase and topoisomerase IV, and the AcrAB efflux pump in resistance to fluoroquinolones in clinical isolates of Proteus mirabilis.

Methods: Nine clinical isolates of P. mirabilis containing eight fluoroquinolone-resistant isolates and one fluoroquinolone-susceptible isolate as the causative pathogen were collected from different patients with urinary tract infections. Fluoroquinolone resistance was characterized by PCR and DNA sequencing. The role of the AcrAB efflux pump was investigated by semi-quantifying the transcriptional expression of the acrB gene.

Results: Double mutations were found in GyrA, at S83I and E87K, and single mutations in GyrB (S464F) and ParC (S80I) in four isolates with ciprofloxacin MICs of 16 to >128 mg/L. In three isolates (ciprofloxacin MICs of >128 mg/L), the level of acrB expression was 2.1- to 3.2-fold higher than that in the wild-type control strain (ciprofloxacin MIC of < or =0.12 mg/L) and these isolates also had increased MICs of minocycline (>64 versus 8-16 mg/L) and chloramphenicol (>256 versus 4-8 mg/L) compared with the five other fluoroquinolone-resistant isolates.

Conclusion: Our findings demonstrate that two mechanisms--mutations in GyrA (at S83I and E87K), GyrB and ParC, and overproduction of the AcrAB efflux pump--might synergistically contribute to a highest level of resistance to fluoroquinolones in clinical isolates of P. mirabilis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms