Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology
- PMID: 16873123
- PMCID: PMC1647304
- DOI: 10.1098/rstb.2006.1874
Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology
Abstract
Charge transport and catalysis in enzymes often rely on amino acid radicals as intermediates. The generation and transport of these radicals are synonymous with proton-coupled electron transfer (PCET), which intrinsically is a quantum mechanical effect as both the electron and proton tunnel. The caveat to PCET is that proton transfer (PT) is fundamentally limited to short distances relative to electron transfer (ET). This predicament is resolved in biology by the evolution of enzymes to control PT and ET coordinates on highly different length scales. In doing so, the enzyme imparts exquisite thermodynamic and kinetic controls over radical transport and radical-based catalysis at cofactor active sites. This discussion will present model systems containing orthogonal ET and PT pathways, thereby allowing the proton and electron tunnelling events to be disentangled. Against this mechanistic backdrop, PCET catalysis of oxygen-oxygen bond activation by mono-oxygenases is captured at biomimetic porphyrin redox platforms. The discussion concludes with the case study of radical-based quantum catalysis in a natural biological enzyme, class I Escherichia coli ribonucleotide reductase. Studies are presented that show the enzyme utilizes both collinear and orthogonal PCET to transport charge from an assembled diiron-tyrosyl radical cofactor to the active site over 35A away via an amino acid radical-hopping pathway spanning two protein subunits.
Figures













Similar articles
-
Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase.Acc Chem Res. 2013 Nov 19;46(11):2524-35. doi: 10.1021/ar4000407. Epub 2013 Jun 4. Acc Chem Res. 2013. PMID: 23730940 Free PMC article.
-
Proton-coupled electron transfer: a unifying mechanism for biological charge transport, amino acid radical initiation and propagation, and bond making/breaking reactions of water and oxygen.Biochim Biophys Acta. 2004 Apr 12;1655(1-3):13-28. doi: 10.1016/j.bbabio.2003.08.010. Biochim Biophys Acta. 2004. PMID: 15100012 Review.
-
Hydrogen bond network between amino acid radical intermediates on the proton-coupled electron transfer pathway of E. coli α2 ribonucleotide reductase.J Am Chem Soc. 2015 Jan 14;137(1):289-98. doi: 10.1021/ja510513z. Epub 2014 Dec 29. J Am Chem Soc. 2015. PMID: 25516424 Free PMC article.
-
Long-range proton-coupled electron transfer in the Escherichia coli class Ia ribonucleotide reductase.Essays Biochem. 2017 May 9;61(2):281-292. doi: 10.1042/EBC20160072. Print 2017 May 9. Essays Biochem. 2017. PMID: 28487404 Review.
-
Use of 2,3,5-F(3)Y-β2 and 3-NH(2)Y-α2 to study proton-coupled electron transfer in Escherichia coli ribonucleotide reductase.Biochemistry. 2011 Mar 1;50(8):1403-11. doi: 10.1021/bi101319v. Epub 2011 Feb 8. Biochemistry. 2011. PMID: 21182280 Free PMC article.
Cited by
-
Synthetic Applications of Proton-Coupled Electron Transfer.Acc Chem Res. 2016 Aug 16;49(8):1546-56. doi: 10.1021/acs.accounts.6b00272. Epub 2016 Jul 29. Acc Chem Res. 2016. PMID: 27472068 Free PMC article.
-
Reversible phenol oxidation and reduction in the structurally well-defined 2-Mercaptophenol-α₃C protein.Biochemistry. 2013 Feb 26;52(8):1409-18. doi: 10.1021/bi301613p. Epub 2013 Feb 14. Biochemistry. 2013. PMID: 23373469 Free PMC article.
-
Histidine residue mediates radical-induced hinge cleavage of human IgG1.J Biol Chem. 2010 Jun 11;285(24):18662-71. doi: 10.1074/jbc.M110.108597. Epub 2010 Mar 19. J Biol Chem. 2010. PMID: 20304919 Free PMC article.
-
Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present.Biomolecules. 2022 Jun 10;12(6):815. doi: 10.3390/biom12060815. Biomolecules. 2022. PMID: 35740940 Free PMC article. Review.
-
Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis.Biochim Biophys Acta. 2016 May;1857(5):589-597. doi: 10.1016/j.bbabio.2015.09.004. Epub 2015 Sep 25. Biochim Biophys Acta. 2016. PMID: 26392147 Free PMC article. Review.
References
-
- Aubert C, Vos M.H, Mathis P, Eker A.P.M, Brettel K. Intraprotein radical transfer during photoactivation of DNA photolyase. Nature. 2000;405:586–590. doi:10.1038/35014644 - DOI - PubMed
-
- Baldwin J, Krebs C, Ley B.A, Edmondson D.E, Huynh B.H, Bollinger J.M., Jr Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of Escherichia coli ribonucleotide reductase. 1. Evidence for a transient tryptophan radical. J. Am. Chem. Soc. 2000;122:12 195–12 206. doi:10.1021/ja001278u - DOI
-
- Barber J, Ferreira K, Maghlaoui K, Iwata S. Structural model of the oxygen-evolving center of photosystem II with mechanistic implications. Phys. Chem. Chem. Phys. 2004;6:4737–4742. doi:10.1039/b407981g - DOI
-
- Barry B, Babcock G.T. Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc. Natl Acad. Sci. USA. 1987;84:7099–7103. doi:10.1073/pnas.84.20.7099 - DOI - PMC - PubMed
-
- Beratan D.N, Onuchic J.N, Hopfield J.J. Electron tunneling through covalent and noncovalent pathways in proteins. J. Chem. Phys. 1987;86:4488–4498. doi:10.1063/1.452723 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources