A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry
- PMID: 16873241
- PMCID: PMC1563787
- DOI: 10.1128/JVI.00029-06
A conserved Gly436-Trp-Leu-Ala-Gly-Leu-Phe-Tyr motif in hepatitis C virus glycoprotein E2 is a determinant of CD81 binding and viral entry
Abstract
The hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer that mediates CD81 receptor binding and viral entry. In this study, we used site-directed mutagenesis to examine the functional role of a conserved G436WLAGLFY motif of E2. The mutants could be placed into two groups based on the ability of mature virion-incorporated E1E2 to bind the large extracellular loop (LEL) of CD81 versus the ability to mediate cellular entry of pseudotyped retroviral particles. Group 1 comprised E2 mutants where LEL binding ability largely correlated with viral entry ability, with conservative and nonconservative substitutions (W437 L/A, L438A, L441V/F, and F442A) inhibiting both functions. These data suggest that Trp-437, Leu-438, Leu-441, and Phe-442 directly interact with the LEL. Group 2 comprised E2 glycoproteins with more conservative substitutions that lacked LEL binding but retained between 20% and 60% of wild-type viral entry competence. The viral entry competence displayed by group 2 mutants was explained by residual binding by the E2 receptor binding domain to cellular full-length CD81. A subset of mutants maintained LEL binding ability in the context of intracellular E1E2 forms, but this function was largely lost in virion-incorporated glycoproteins. These data suggest that the CD81 binding site undergoes a conformational transition during glycoprotein maturation through the secretory pathway. The G436P mutant was an outlier, retaining near-wild-type levels of CD81 binding but lacking significant viral entry ability. These findings indicate that the G436WLAGLFY motif of E2 functions in CD81 binding and in pre- or post-CD81-dependent stages of viral entry.
Figures
References
-
- Bartosch, B., and F. L. Cosset. 2006. Cell entry of hepatitis C virus. Virology 348:1-12. - PubMed
-
- Bartosch, B., A. Vitelli, C. Granier, C. Goujon, J. Dubuisson, S. Pascale, E. Scarselli, R. Cortese, A. Nicosia, and F. L. Cosset. 2003. Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J. Biol. Chem. 278:41624-41630. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
