Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1991:88:331-41.
doi: 10.1016/s0079-6123(08)63820-0.

The cerebellar norepinephrine system: inhibition, modulation, and gating

Affiliations
Review

The cerebellar norepinephrine system: inhibition, modulation, and gating

D J Woodward et al. Prog Brain Res. 1991.

Abstract

A series of studies has been conducted to determine the mode of action on the cerebellar cortical circuitry of the norepinephrine (NE)-containing afferents from the locus coeruleus. NE has been known to exert an "inhibitory" action on the background firing observed in Purkinje cells, due presumably to a shift in conductances favoring hyperpolarization. An additional independent action at low threshold appears to be an enhancement of GABA, the inhibitory transmitter of cerebellar interneurons. Recent whole-cell patch-clamp studies on isolated Purkinje cells indicate that exposure to NE increases the chloride current caused by transient pulses of GABA applied iontophoretically. NE applied to Purkinje cells in the parafloccular lobule during stimulation by moving visual patterns revealed the capacity either to "gate" signals initially not expressed, or to amplify the gain of phasic excitations. The control of emergent circuit functions may be the functional consequence of the multiple modulatory functions of NE.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources