Role of membrane potential on artificial transformation of E. coli with plasmid DNA
- PMID: 16876281
- DOI: 10.1016/j.jbiotec.2006.06.008
Role of membrane potential on artificial transformation of E. coli with plasmid DNA
Abstract
The standard method of transformation of Escherichea coli with plasmid DNA involves two important steps: cells are first suspended in 100mM CaCl(2) at 0 degrees C (in which DNA is added), followed by the administration of a heat-pulse from 0 to 42 degrees C for 90s [Cohen, S., Chang, A., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria. Proc. Natl. Acad. Sci. U.S.A., 69, 2110-2114]. The first step makes the cells competent for uptake of DNA and the second step is believed to facilitate the DNA entry into the cells by an unknown mechanism. In this study, the measure of membrane potential of the intact competent cells, at different steps of transformation process, either by the method of spectrofluorimetry or that of flow cytometry, indicates that the heat-pulse step (0-->42 degrees C) heavily decreases the membrane potential. A subsequent cold shock (42-->0 degrees C) raises the potential further to its original value. Moreover, the efficiency of transformation of E. coli XL1 Blue cells with plasmid pUC19 DNA remains unaltered when the heat-pulse step is replaced by the incubation of the DNA-adsorbed competent cells with 10 microM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 90s at 0 degrees C. Since the CCCP, a well-known protonophore, reduces membrane potential by dissipating the proton-motive-force (PMF) across E. coli plasma membrane, our experimental results suggest that the heat-pulse step of the standard transformation procedure facilitates DNA entry into the cells by lowering the membrane potential.
Similar articles
-
How does plasmid DNA penetrate cell membranes in artificial transformation process of Escherichia coli?Mol Membr Biol. 2008 Aug;25(5):411-22. doi: 10.1080/09687680802187765. Mol Membr Biol. 2008. PMID: 18651316
-
Transformation of plasmid DNA into E. coli using the heat shock method.J Vis Exp. 2007;(6):253. doi: 10.3791/253. Epub 2007 Aug 1. J Vis Exp. 2007. PMID: 18997900 Free PMC article.
-
Escherichia coli cells penetrated by chrysotile fibers are transformed to antibiotic resistance by incorporation of exogenous plasmid DNA.Appl Microbiol Biotechnol. 2002 Dec;60(4):461-8. doi: 10.1007/s00253-002-1148-8. Epub 2002 Oct 18. Appl Microbiol Biotechnol. 2002. PMID: 12466888
-
Plasmid uptake by bacteria: a comparison of methods and efficiencies.Appl Microbiol Biotechnol. 2009 Jul;83(5):791-8. doi: 10.1007/s00253-009-2042-4. Epub 2009 May 27. Appl Microbiol Biotechnol. 2009. PMID: 19471921 Review.
-
[Advances in the molecular mechanism of natural bacterial transformation--a review].Wei Sheng Wu Xue Bao. 2012 Jan;52(1):6-11. Wei Sheng Wu Xue Bao. 2012. PMID: 22489454 Review. Chinese.
Cited by
-
Genome editing in mouse spermatogonial stem cell lines targeting the Tex15 gene using CRISPR/Cas9.Front Vet Sci. 2025 May 14;12:1599598. doi: 10.3389/fvets.2025.1599598. eCollection 2025. Front Vet Sci. 2025. PMID: 40438407 Free PMC article.
-
Calcium chloride made E. coli competent for uptake of extraneous DNA through overproduction of OmpC protein.Protein J. 2012 Jun;31(5):366-73. doi: 10.1007/s10930-012-9411-z. Protein J. 2012. PMID: 22562126
-
Adenosine monophosphate affects competence development and plasmid DNA transformation in Escherichia coli.Curr Microbiol. 2013 Nov;67(5):550-6. doi: 10.1007/s00284-013-0400-z. Epub 2013 Jun 7. Curr Microbiol. 2013. PMID: 23743599
-
Impact of heat shock step on bacterial transformation efficiency.Mol Biol Res Commun. 2016 Dec;5(4):257-261. Mol Biol Res Commun. 2016. PMID: 28261629 Free PMC article.
-
A novel approach for increasing transformation efficiency in E. coli DH5α cells using silver nanoparticles.3 Biotech. 2019 Mar;9(3):113. doi: 10.1007/s13205-019-1640-9. Epub 2019 Mar 1. 3 Biotech. 2019. PMID: 30863697 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources