Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug 28;114(2):193-201.
doi: 10.1016/j.jconrel.2006.04.010. Epub 2006 May 9.

Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages

Affiliations

Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages

Wassana Yeeprae et al. J Control Release. .

Abstract

Carbohydrate grafted emulsions are one of the most promising cell-specific targeting systems for lipophilic drugs. We have previously reported that mannosylated (Man-) emulsions composed of soybean oil, EggPC and cholesten-5-yloxy-N-(4-((1-imino-2-d-thiomannosylethyl)amino)alkyl)formamide (Man-C4-Chol) with a ratio of 70:25:5 were significantly delivered to liver non-parenchymal cells (NPC) via mannose receptor-mediated mechanism after intravenous administration in mice. Since the efficient targeting through a receptor-mediated mechanism is largely controlled by ligand-receptor interaction, the effect of mannose density on Man-emulsions was studied with regard to both the disposition in vivo in mice and the uptake in vitro, using elicited macrophages which express a number of mannose receptors. After intravenous injection, Man-emulsions with 5.0% (Man-5.0-emulsions) and 7.5% (Man-7.5-emulsions) of Man-C4-Chol were rapidly eliminated from the blood circulation and preferentially accumulated in the liver-NPC compared with Man-emulsions with 2.5% of Man-C4-Chol (Man-2.5-emulsions) and bare emulsions (Bare-emulsions). The in vitro study showed increased internalization of Man-5.0- and Man-7.5-emulsions and significant inhibition of uptake in the presence of mannan. The enhanced uptake of Man-emulsions was related to the increasing of Man-C4-Chol content that corresponded to confocal microscopy study. These results suggest that the mannose density of Man-emulsions plays an important role in both cellular recognition and internalization via a mannose receptor-mediated mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources